BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30698940)

  • 1. Scalable Manufacturing of Single Nanowire Devices Using Crack-Defined Shadow Mask Lithography.
    Enrico A; Dubois V; Niklaus F; Stemme G
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8217-8226. PubMed ID: 30698940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical and Thermal Conductivities of Single Cu
    De Carlo I; Baudino L; Klapetek P; Serrapede M; Michieletti F; De Leo N; Pirri F; Boarino L; Lamberti A; Milano G
    Nanomaterials (Basel); 2023 Oct; 13(21):. PubMed ID: 37947669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The implementation of thermal and UV nanoimprint lithography for selective area epitaxy.
    Hager A; Güniat L; Morgan N; Ramanandan SP; Rudra A; Piazza V; Fontcuberta I Morral A; Dede D
    Nanotechnology; 2023 Aug; 34(44):. PubMed ID: 37494897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithography-free and high-efficiency preparation of black phosphorous devices by direct evaporation through shadow mask.
    Ni J; Mi H; Tan P; An X; Gao L; Luo X; Cai Z; Ni Z; Gu X; Xiao S; Nan H; Ostrikov KK
    Nanotechnology; 2022 Mar; 33(22):. PubMed ID: 35172297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale metal nanoelectrode arrays based on printed nanowire lithography for nanowire complementary inverters.
    Ko HS; Lee Y; Min SY; Kwon SJ; Lee TW
    Nanoscale; 2017 Oct; 9(41):15766-15772. PubMed ID: 29019493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of large number density platinum nanowire arrays by size reduction lithography and nanoimprint lithography.
    Yan XM; Kwon S; Contreras AM; Bokor J; Somorjai GA
    Nano Lett; 2005 Apr; 5(4):745-8. PubMed ID: 15826120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical Activity and Extremes of Individual Suspended ZnO Nanowires for 3D Nanoelectronic Applications.
    Djoulde A; He M; Liu X; Kong L; Zhao P; Rao J; Chen J; Meng L; Wang Z; Liu M
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):44433-44443. PubMed ID: 37682724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost-Effective Fabrication of Fractal Silicon Nanowire Arrays.
    Leonardi AA; Lo Faro MJ; Miritello M; Musumeci P; Priolo F; Fazio B; Irrera A
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanowire lithography on silicon.
    Colli A; Fasoli A; Pisana S; Fu Y; Beecher P; Milne WI; Ferrari AC
    Nano Lett; 2008 May; 8(5):1358-62. PubMed ID: 18386934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts.
    Fülöp G; d'Hollosy S; Hofstetter L; Baumgartner A; Nygård J; Schönenberger C; Csonka S
    Nanotechnology; 2016 May; 27(19):195303. PubMed ID: 27040175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable Top-Down Approach Tailored by Interferometric Lithography to Achieve Large-Area Single-Mode GaN Nanowire Laser Arrays on Sapphire Substrate.
    Behzadirad M; Nami M; Wostbrock N; Zamani Kouhpanji MR; Feezell DF; Brueck SRJ; Busani T
    ACS Nano; 2018 Mar; 12(3):2373-2380. PubMed ID: 29401381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-ultraviolet zinc oxide nanowire sensor using low temperature hydrothermal growth.
    Swanwick ME; Pfaendler SM; Akinwande AI; Flewitt AJ
    Nanotechnology; 2012 Aug; 23(34):344009. PubMed ID: 22885284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stencil nano lithography based on a nanoscale polymer shadow mask: towards organic nanoelectronics.
    Yun H; Kim S; Kim H; Lee J; McAllister K; Kim J; Pyo S; Sung Kim J; Campbell EE; Hyoung Lee W; Wook Lee S
    Sci Rep; 2015 May; 5():10220. PubMed ID: 25959389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth.
    Madaria AR; Yao M; Chi C; Huang N; Lin C; Li R; Povinelli ML; Dapkus PD; Zhou C
    Nano Lett; 2012 Jun; 12(6):2839-45. PubMed ID: 22594573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometric Nanophotonics: Light Management in Single Nanowires through Morphology.
    Kim S; Cahoon JF
    Acc Chem Res; 2019 Dec; 52(12):3511-3520. PubMed ID: 31799833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-controlled VLS growth of planar nanowires: yield and mechanism.
    Zhang C; Miao X; Mohseni PK; Choi W; Li X
    Nano Lett; 2014 Dec; 14(12):6836-41. PubMed ID: 25343224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-Demand Fabrication of Si/SiO
    Cao H; Li X; Zhou B; Chen T; Shi T; Zheng J; Liu G; Wang Y
    Nanoscale Res Lett; 2017 Dec; 12(1):105. PubMed ID: 28209026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A technique for large-area position-controlled growth of GaAs nanowire arrays.
    Kauppinen C; Haggren T; Kravchenko A; Jiang H; Huhtio T; Kauppinen E; Dhaka V; Suihkonen S; Kaivola M; Lipsanen H; Sopanen M
    Nanotechnology; 2016 Apr; 27(13):135601. PubMed ID: 26895144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Assembly of Nanowires: From Dynamic Monitoring to Precision Control.
    He Z; Wang JL; Chen SM; Liu JW; Yu SH
    Acc Chem Res; 2022 Jun; 55(11):1480-1491. PubMed ID: 35578915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vacuum-free self-powered parallel electron lithography with sub-35-nm resolution.
    Lu Y; Lal A
    Nano Lett; 2010 Jun; 10(6):2197-201. PubMed ID: 20481509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.