BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 30699051)

  • 1. A Motor Theory of Sleep-Wake Control: Arousal-Action Circuit.
    Liu D; Dan Y
    Annu Rev Neurosci; 2019 Jul; 42():27-46. PubMed ID: 30699051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitation of GABAergic Neurons in the Bed Nucleus of the Stria Terminalis Triggers Immediate Transition from Non-Rapid Eye Movement Sleep to Wakefulness in Mice.
    Kodani S; Soya S; Sakurai T
    J Neurosci; 2017 Jul; 37(30):7164-7176. PubMed ID: 28642284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An electrophysiological marker of arousal level in humans.
    Lendner JD; Helfrich RF; Mander BA; Romundstad L; Lin JJ; Walker MP; Larsson PG; Knight RT
    Elife; 2020 Jul; 9():. PubMed ID: 32720644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basal forebrain circuit for sleep-wake control.
    Xu M; Chung S; Zhang S; Zhong P; Ma C; Chang WC; Weissbourd B; Sakai N; Luo L; Nishino S; Dan Y
    Nat Neurosci; 2015 Nov; 18(11):1641-7. PubMed ID: 26457552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurophysiological brain mapping of human sleep-wake states.
    Kalamangalam GP; Long S; Chelaru MI
    Clin Neurophysiol; 2021 Jul; 132(7):1550-1563. PubMed ID: 34034085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic Activation, Inactivation, and Deletion Reveal a Limited And Nuanced Role for Somatostatin-Containing Basal Forebrain Neurons in Behavioral State Control.
    Anaclet C; De Luca R; Venner A; Malyshevskaya O; Lazarus M; Arrigoni E; Fuller PM
    J Neurosci; 2018 May; 38(22):5168-5181. PubMed ID: 29735555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Circadian Output Circuit Controls Sleep-Wake Arousal in Drosophila.
    Guo F; Holla M; Díaz MM; Rosbash M
    Neuron; 2018 Nov; 100(3):624-635.e4. PubMed ID: 30269992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel machine learning system for identifying sleep-wake states in mice.
    Fraigne JJ; Wang J; Lee H; Luke R; Pintwala SK; Peever JH
    Sleep; 2023 Jun; 46(6):. PubMed ID: 37021715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutamatergic Neurons in the Preoptic Hypothalamus Promote Wakefulness, Destabilize NREM Sleep, Suppress REM Sleep, and Regulate Cortical Dynamics.
    Mondino A; Hambrecht-Wiedbusch VS; Li D; York AK; Pal D; González J; Torterolo P; Mashour GA; Vanini G
    J Neurosci; 2021 Apr; 41(15):3462-3478. PubMed ID: 33664133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice.
    Kroeger D; Ferrari LL; Petit G; Mahoney CE; Fuller PM; Arrigoni E; Scammell TE
    J Neurosci; 2017 Feb; 37(5):1352-1366. PubMed ID: 28039375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the effect of sleep regulation on a neural mass model.
    Costa MS; Born J; Claussen JC; Martinetz T
    J Comput Neurosci; 2016 Aug; 41(1):15-28. PubMed ID: 27066796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG beta power and heart rate variability describe the association between cortical and autonomic arousals across sleep.
    Kuo TB; Chen CY; Hsu YC; Yang CC
    Auton Neurosci; 2016 Jan; 194():32-7. PubMed ID: 26681575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Inhibitory Lateral Hypothalamic-Preoptic Circuit Mediates Rapid Arousals from Sleep.
    Venner A; De Luca R; Sohn LT; Bandaru SS; Verstegen AMJ; Arrigoni E; Fuller PM
    Curr Biol; 2019 Dec; 29(24):4155-4168.e5. PubMed ID: 31761703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dorsal Raphe Dopamine Neurons Modulate Arousal and Promote Wakefulness by Salient Stimuli.
    Cho JR; Treweek JB; Robinson JE; Xiao C; Bremner LR; Greenbaum A; Gradinaru V
    Neuron; 2017 Jun; 94(6):1205-1219.e8. PubMed ID: 28602690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dysregulation of Sleep Behavioral States in Narcolepsy.
    Schoch SF; Werth E; Poryazova R; Scammell TE; Baumann CR; Imbach LL
    Sleep; 2017 Dec; 40(12):. PubMed ID: 29029348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamatergic Neurons of the Paraventricular Nucleus are Critical for the Control of Wakefulness.
    Liu Y; Li Y; Yang B; Yu M; Zhang X; Bi L; Xu H
    Neuroscience; 2020 Oct; 446():137-144. PubMed ID: 32860935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A wake-active locomotion circuit depolarizes a sleep-active neuron to switch on sleep.
    Maluck E; Busack I; Besseling J; Masurat F; Turek M; Busch KE; Bringmann H
    PLoS Biol; 2020 Feb; 18(2):e3000361. PubMed ID: 32078631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of Preoptic Tachykinin 1 Neurons Promotes Wakefulness over Sleep and Volatile Anesthetic-Induced Unconsciousness.
    Reitz SL; Wasilczuk AZ; Beh GH; Proekt A; Kelz MB
    Curr Biol; 2021 Jan; 31(2):394-405.e4. PubMed ID: 33188746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive dissection of mouse sleep using a piezoelectric motion sensor.
    Yaghouby F; Donohue KD; O'Hara BF; Sunderam S
    J Neurosci Methods; 2016 Feb; 259():90-100. PubMed ID: 26582569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Interplay between Long- and Short-Range Temporal Correlations Shapes Cortex Dynamics across Vigilance States.
    Meisel C; Klaus A; Vyazovskiy VV; Plenz D
    J Neurosci; 2017 Oct; 37(42):10114-10124. PubMed ID: 28947577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.