These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30699079)

  • 41. Degradation of acesulfame in UV/monochloramine process: Kinetics, transformation pathways and toxicity assessment.
    Chow CH; Law JC; Leung KS
    J Hazard Mater; 2021 Feb; 403():123935. PubMed ID: 33264984
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Insight into carbamazepine degradation by UV/monochloramine: Reaction mechanism, oxidation products, and DBPs formation.
    Bu L; Zhou S; Zhu S; Wu Y; Duan X; Shi Z; Dionysiou DD
    Water Res; 2018 Dec; 146():288-297. PubMed ID: 30292129
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of preformed monochloramine for bromate control in ozonation for potable reuse.
    Pearce R; Hogard S; Buehlmann P; Salazar-Benites G; Wilson C; Bott C
    Water Res; 2022 Mar; 211():118049. PubMed ID: 35032872
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reactive Nitrogen Species Mediated Degradation of Estrogenic Disrupting Chemicals by Biochar/Monochloramine in Buffered Water and Synthetic Hydrolyzed Urine.
    Wang Z; Sun P; Li Y; Meng T; Li Z; Zhang X; Zhang R; Jia H; Yao H
    Environ Sci Technol; 2019 Nov; 53(21):12688-12696. PubMed ID: 31625381
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biofilm community dynamics in bench-scale annular reactors simulating arrestment of chloraminated drinking water nitrification.
    Gomez-Alvarez V; Schrantz KA; Pressman JG; Wahman DG
    Environ Sci Technol; 2014 May; 48(10):5448-57. PubMed ID: 24754322
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling the kinetics of ferrous iron oxidation by monochloramine.
    Vikesland PJ; Valentine RL
    Environ Sci Technol; 2002 Feb; 36(4):662-8. PubMed ID: 11878380
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Continuous monitoring in sewer networks an approach for quantification of pollution loads from CSOs into surface water bodies.
    Gruber G; Winkler S; Pressl A
    Water Sci Technol; 2005; 52(12):215-23. PubMed ID: 16477989
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of chloramine species in NDMA formation.
    Selbes M; Beita-Sandí W; Kim D; Karanfil T
    Water Res; 2018 Sep; 140():100-109. PubMed ID: 29702375
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent advances in drinking water disinfection: successes and challenges.
    Ngwenya N; Ncube EJ; Parsons J
    Rev Environ Contam Toxicol; 2013; 222():111-70. PubMed ID: 22990947
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Degradation of carbamazepine and disinfection byproducts formation in water distribution system in the presence of copper corrosion products.
    Sheng D; Zhu S; Zhang W; Bu L; Wu Y; Wang J; Zhou S
    Chemosphere; 2021 Nov; 282():131066. PubMed ID: 34470152
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Formation of iodinated trihalomethanes and noniodinated disinfection byproducts during chloramination of algal organic matter extracted from Microcystis aeruginosa.
    Liu C; Ersan MS; Plewa MJ; Amy G; Karanfil T
    Water Res; 2019 Oct; 162():115-126. PubMed ID: 31255781
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chemical disinfection of combined sewer overflow waters using performic acid or peracetic acids.
    Chhetri RK; Thornberg D; Berner J; Gramstad R; Öjstedt U; Sharma AK; Andersen HR
    Sci Total Environ; 2014 Aug; 490():1065-72. PubMed ID: 24918873
    [TBL] [Abstract][Full Text] [Related]  

  • 53. UV Photolysis of Chloramine and Persulfate for 1,4-Dioxane Removal in Reverse-Osmosis Permeate for Potable Water Reuse.
    Li W; Patton S; Gleason JM; Mezyk SP; Ishida KP; Liu H
    Environ Sci Technol; 2018 Jun; 52(11):6417-6425. PubMed ID: 29653056
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Occurrence and formation potential of N-nitrosodimethylamine in ground water and river water in Tokyo.
    Huy NV; Murakami M; Sakai H; Oguma K; Kosaka K; Asami M; Takizawa S
    Water Res; 2011 May; 45(11):3369-77. PubMed ID: 21514620
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The influence of Cu(II) on the decay of monochloramine.
    Fu J; Qu J; Liu R; Zhao X; Qiang Z
    Chemosphere; 2009 Jan; 74(2):181-6. PubMed ID: 19013632
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of techniques for control of disinfection by-products: a pilot study.
    Nnadi FN; Hernandez M; Fulkerson M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(6):1573-85. PubMed ID: 15244338
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preventing Healthcare-Associated Legionellosis: Results after 3 Years of Continuous Disinfection of Hot Water with Monochloramine and an Effective Water Safety Plan.
    Coniglio MA; Ferrante M; Yassin MH
    Int J Environ Res Public Health; 2018 Jul; 15(8):. PubMed ID: 30060459
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Monochloramine decay in model and distribution system waters.
    Vikesland PJ; Ozekin K; Valentine RL
    Water Res; 2001 May; 35(7):1766-76. PubMed ID: 11329679
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synergistic removal of ammonium by monochloramine photolysis.
    Zhang X; Ren P; Li W; Lei Y; Yang X; Blatchley ER
    Water Res; 2019 Apr; 152():226-233. PubMed ID: 30677633
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DEET degradation in UV/monochloramine process: Kinetics, degradation pathway, toxicity and energy consumption analysis.
    Zhu T; Deng J; Xu M; Cai A; Ye C; Li J; Li X; Li Q
    Chemosphere; 2020 Sep; 255():126962. PubMed ID: 32402887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.