BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30699157)

  • 1. The glycerol-3-phosphate acyltransferase PLAT2 functions in the generation of DHA-rich glycerolipids in Aurantiochytrium limacinum F26-b.
    Nutahara E; Abe E; Uno S; Ishibashi Y; Watanabe T; Hayashi M; Okino N; Ito M
    PLoS One; 2019; 14(1):e0211164. PubMed ID: 30699157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel lysophospholipid acyltransferase PLAT1 of Aurantiochytrium limacinum F26-b responsible for generation of palmitate-docosahexaenoate-phosphatidylcholine and phosphatidylethanolamine.
    Abe E; Ikeda K; Nutahara E; Hayashi M; Yamashita A; Taguchi R; Doi K; Honda D; Okino N; Ito M
    PLoS One; 2014; 9(8):e102377. PubMed ID: 25090090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of TG accumulation and lipid droplet morphology by the novel TLDP1 in
    Watanabe T; Sakiyama R; Iimi Y; Sekine S; Abe E; Nomura KH; Nomura K; Ishibashi Y; Okino N; Hayashi M; Ito M
    J Lipid Res; 2017 Dec; 58(12):2334-2347. PubMed ID: 29025869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel lysophosphatidic acid acyltransferase enzyme (LPAAT4) with a possible role for incorporating docosahexaenoic acid into brain glycerophospholipids.
    Eto M; Shindou H; Shimizu T
    Biochem Biophys Res Commun; 2014 Jan; 443(2):718-24. PubMed ID: 24333445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A thraustochytrid-specific lipase/phospholipase with unique positional specificity contributes to microbial competition and fatty acid acquisition from the environment.
    Ishibashi Y; Aoki K; Okino N; Hayashi M; Ito M
    Sci Rep; 2019 Nov; 9(1):16357. PubMed ID: 31705036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid Distribution Pattern and Transcriptomic Insights Revealed the Potential Mechanism of Docosahexaenoic Acid Traffics in
    Yue XH; Chen WC; Wang ZM; Liu PY; Li XY; Lin CB; Lu SH; Huang FH; Wan X
    J Agric Food Chem; 2019 Aug; 67(34):9683-9693. PubMed ID: 31379160
    [No Abstract]   [Full Text] [Related]  

  • 7. Enhanced Production of Astaxanthin without Decrease of DHA Content in Aurantiochytrium limacinum by Overexpressing Multifunctional Carotenoid Synthase Gene.
    Kubo Y; Shiroi M; Higashine T; Mori Y; Morimoto D; Nakagawa S; Sawayama S
    Appl Biochem Biotechnol; 2021 Jan; 193(1):52-64. PubMed ID: 32808245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources.
    Li J; Liu R; Chang G; Li X; Chang M; Liu Y; Jin Q; Wang X
    Bioresour Technol; 2015 Feb; 177():51-7. PubMed ID: 25479393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of PlsX and the acyl-phosphate dependent sn-glycerol-3-phosphate acyltransferase PlsY in the initial stage of glycerolipid synthesis in Bacillus subtilis.
    Hara Y; Seki M; Matsuoka S; Hara H; Yamashita A; Matsumoto K
    Genes Genet Syst; 2008 Dec; 83(6):433-42. PubMed ID: 19282621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis.
    Wendel AA; Lewin TM; Coleman RA
    Biochim Biophys Acta; 2009 Jun; 1791(6):501-6. PubMed ID: 19038363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of glycerol and glucose on docosahexaenoic acid synthesis in
    Zhang H; Zhao X; Zhao C; Zhang J; Liu Y; Yao M; Liu J
    Prep Biochem Biotechnol; 2023; 53(1):81-92. PubMed ID: 35289738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of continuous-high cell density-fed-batch fermentation for Aurantiochytrium limacinum for simultaneous high biomass, lipids and docosahexaenoic acid production.
    Pawar PR; Lali AM; Prakash G
    Bioresour Technol; 2021 Apr; 325():124636. PubMed ID: 33513448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate channeling in the glycerol-3-phosphate pathway regulates the synthesis, storage and secretion of glycerolipids.
    Lee J; Ridgway ND
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Jan; 1865(1):158438. PubMed ID: 30959116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of supplemented diacylglycerol rich in docosahexaenoic acid on serum triacylglycerol in a diet-induced hyperlipidemic model of rats are essentially equivalent to those of triacylglycerol rich in docosahexaenoic acid.
    Tamai T; Murota I; Maruyama K; Baba T; Toyama T; Watanabe N; Kudo N; Kawashima Y
    Biol Pharm Bull; 2007 Dec; 30(12):2381-8. PubMed ID: 18057730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a cDNA that encodes a 1-acyl-sn-glycerol-3-phosphate acyltransferase from Limnanthes douglasii.
    Brown AP; Brough CL; Kroon JT; Slabas AR
    Plant Mol Biol; 1995 Oct; 29(2):267-78. PubMed ID: 7579178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of a type 2 diacylglycerol acyltransferase from Thalassiosira pseudonana in yeast leads to incorporation of docosahexaenoic acid β-oxidation intermediates into triacylglycerol.
    Xu J; Kazachkov M; Jia Y; Zheng Z; Zou J
    FEBS J; 2013 Dec; 280(23):6162-72. PubMed ID: 24128189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular identification of microsomal acyl-CoA:glycerol-3-phosphate acyltransferase, a key enzyme in de novo triacylglycerol synthesis.
    Cao J; Li JL; Li D; Tobin JF; Gimeno RE
    Proc Natl Acad Sci U S A; 2006 Dec; 103(52):19695-700. PubMed ID: 17170135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning of the pks3 gene of Aurantiochytrium limacinum and functional study of the 3-ketoacyl-ACP reductase and dehydratase enzyme domains.
    Liu Z; Zang X; Cao X; Wang Z; Liu C; Sun D; Guo Y; Zhang F; Yang Q; Hou P; Pang C
    PLoS One; 2018; 13(12):e0208853. PubMed ID: 30533058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of triacylglycerol biosynthesis in subcellular fractions of an oleaginous fungus, Mortierella ramanniana var. angulispora.
    Pillai MG; Certik M; Nakahara T; Kamisaka Y
    Biochim Biophys Acta; 1998 Jul; 1393(1):128-36. PubMed ID: 9714775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioconversion of waste acid oil to docosahexaenoic acid by integration of "ex novo'' and "de novo'' fermentation in Aurantiochytrium limacinum.
    Laddha H; Pawar PR; Prakash G
    Bioresour Technol; 2021 Jul; 332():125062. PubMed ID: 33839510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.