BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30699335)

  • 1. Multiple iron reduction by methoxylated phenolic lignin structures and the generation of reactive oxygen species by lignocellulose surfaces.
    Tamaru Y; Yoshida M; Eltis LD; Goodell B
    Int J Biol Macromol; 2019 May; 128():340-346. PubMed ID: 30699335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Function of the iron-binding chelator produced by Coriolus versicolor in lignin biodegradation.
    Wang L; Yan W; Chen J; Huang F; Gao P
    Sci China C Life Sci; 2008 Mar; 51(3):214-21. PubMed ID: 18246309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential of Wood-Rotting Fungi to Attack Polystyrene Sulfonate and Its Depolymerisation by Gloeophyllum trabeum via Hydroquinone-Driven Fenton Chemistry.
    Krueger MC; Hofmann U; Moeder M; Schlosser D
    PLoS One; 2015; 10(7):e0131773. PubMed ID: 26147966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions.
    Arantes V; Milagres AM; Filley TR; Goodell B
    J Ind Microbiol Biotechnol; 2011 Apr; 38(4):541-55. PubMed ID: 20711629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass.
    Arantes V; Jellison J; Goodell B
    Appl Microbiol Biotechnol; 2012 Apr; 94(2):323-38. PubMed ID: 22391968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi.
    Goodell B; Zhu Y; Kim S; Kafle K; Eastwood D; Daniel G; Jellison J; Yoshida M; Groom L; Pingali SV; O'Neill H
    Biotechnol Biofuels; 2017; 10():179. PubMed ID: 28702084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of a catecholate chelator as a redox agent in Fenton-based reactions on degradation of lignin-model substrates and on COD removal from effluent of an ECF kraft pulp mill.
    Arantes V; Milagres AM
    J Hazard Mater; 2007 Mar; 141(1):273-9. PubMed ID: 16905243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into lignin degradation and its potential industrial applications.
    Abdel-Hamid AM; Solbiati JO; Cann IK
    Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective lignin and polysaccharide removal in natural fungal decay of wood as evidenced by in situ structural analyses.
    Martínez AT; Rencoret J; Nieto L; Jiménez-Barbero J; Gutiérrez A; Del Río JC
    Environ Microbiol; 2011 Jan; 13(1):96-107. PubMed ID: 21199251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unlocking the distinctive enzymatic functions of the early plant biomass deconstructive genes in a brown rot fungus by cell-free protein expression.
    Castaño JD; El Khoury IV; Goering J; Evans JE; Zhang J
    Appl Environ Microbiol; 2024 May; 90(5):e0012224. PubMed ID: 38567954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fungal variegatic acid and extracellular polysaccharides promote the site-specific generation of reactive oxygen species.
    Zhu Y; Mahaney J; Jellison J; Cao J; Gressler J; Hoffmeister D; Goodell B
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):329-338. PubMed ID: 28032229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A selective lignin-degrading fungus, Ceriporiopsis subvermispora, produces alkylitaconates that inhibit the production of a cellulolytic active oxygen species, hydroxyl radical in the presence of iron and H(2)O(2).
    Watanabe T; Teranishi H; Honda Y; Kuwahara M
    Biochem Biophys Res Commun; 2002 Oct; 297(4):918-23. PubMed ID: 12359241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mimicking the Fenton reaction-induced wood decay by fungi for pretreatment of lignocellulose.
    Jung YH; Kim HK; Park HM; Park YC; Park K; Seo JH; Kim KH
    Bioresour Technol; 2015 Mar; 179():467-472. PubMed ID: 25575206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructural Analysis of Enzymatic and Non-enzymatic Brown Rot Fungal Deconstruction of the Lignocellulose Cell Wall
    Zhu Y; Plaza N; Kojima Y; Yoshida M; Zhang J; Jellison J; Pingali SV; O'Neill H; Goodell B
    Front Microbiol; 2020; 11():1389. PubMed ID: 32670241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genomics-informed study of oxalate and cellulase regulation by brown rot wood-degrading fungi.
    Presley GN; Zhang J; Schilling JS
    Fungal Genet Biol; 2018 Mar; 112():64-70. PubMed ID: 27543342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox silencing of the Fenton reaction system by an alkylitaconic acid, ceriporic acid B produced by a selective lignin-degrading fungus, Ceriporiopsis subvermispora.
    Ohashi Y; Kan Y; Watanabe T; Honda Y; Watanabe T
    Org Biomol Chem; 2007 Mar; 5(5):840-7. PubMed ID: 17315072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin.
    Martínez AT; Speranza M; Ruiz-Dueñas FJ; Ferreira P; Camarero S; Guillén F; Martínez MJ; Gutiérrez A; del Río JC
    Int Microbiol; 2005 Sep; 8(3):195-204. PubMed ID: 16200498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial demethylation of lignin: Evidence of enzymes participating in the removal of methyl/methoxyl groups.
    Venkatesagowda B; Dekker RFH
    Enzyme Microb Technol; 2021 Jun; 147():109780. PubMed ID: 33992403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterisation of the initial degradation stage of Scots pine (Pinus sylvestris L.) sapwood after attack by brown-rot fungus Coniophora puteana.
    Irbe I; Andersone I; Andersons B; Noldt G; Dizhbite T; Kurnosova N; Nuopponen M; Stewart D
    Biodegradation; 2011 Jul; 22(4):719-28. PubMed ID: 21327804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review.
    van Kuijk SJA; Sonnenberg ASM; Baars JJP; Hendriks WH; Cone JW
    Biotechnol Adv; 2015; 33(1):191-202. PubMed ID: 25447421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.