These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30699395)

  • 1. Self-assembled vortex crystals induced by inhomogeneous magnetic textures.
    Menezes RM; Sardella E; Cabral LRE; de Souza Silva CC
    J Phys Condens Matter; 2019 May; 31(17):175402. PubMed ID: 30699395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformal Vortex Crystals.
    Menezes RM; Silva CCS
    Sci Rep; 2017 Oct; 7(1):12766. PubMed ID: 28986521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-dependent Ginzburg-Landau treatment of rf magnetic vortices in superconductors: Vortex semiloops in a spatially nonuniform magnetic field.
    Oripov B; Anlage SM
    Phys Rev E; 2020 Mar; 101(3-1):033306. PubMed ID: 32289922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting vortices in superconductors: extracting one-dimensional topological singularities from a discretized complex scalar field.
    Phillips CL; Peterka T; Karpeyev D; Glatz A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023311. PubMed ID: 25768639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defects in conformal crystals: Discrete versus continuous disclination models.
    Meng Q; Grason GM
    Phys Rev E; 2021 Sep; 104(3-1):034614. PubMed ID: 34654085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of vortex dynamics in type-II superconductors in oscillating magnetic field using time-dependent Ginzburg-Landau equations.
    Jafri HM; Ma X; Zhao C; Liang D; Huang H; Liu Z; Chen LQ
    J Phys Condens Matter; 2017 Dec; 29(50):505701. PubMed ID: 28925380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracting, Tracking, and Visualizing Magnetic Flux Vortices in 3D Complex-Valued Superconductor Simulation Data.
    Guo H; Phillips CL; Peterka T; Karpeyev D; Glatz A
    IEEE Trans Vis Comput Graph; 2016 Jan; 22(1):827-36. PubMed ID: 26529730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation and stability of conformal spirals in confined 2D crystals.
    Silva FCO; Menezes RM; Cabral LRE; de Souza Silva CC
    J Phys Condens Matter; 2020 Sep; 32(50):. PubMed ID: 32985414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Giant vortex states in type I superconductors simulated by Ginzburg-Landau equations.
    Palonen H; Jäykkä J; Paturi P
    J Phys Condens Matter; 2013 Sep; 25(38):385702. PubMed ID: 23995237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales.
    Curran PJ; Desoky WM; Milosević MV; Chaves A; Laloë JB; Moodera JS; Bending SJ
    Sci Rep; 2015 Oct; 5():15569. PubMed ID: 26492969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-organization, condensation, and annihilation of topological vortices and antivortices in a multiferroic.
    Chae SC; Horibe Y; Jeong DY; Rodan S; Lee N; Cheong SW
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21366-70. PubMed ID: 21115846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-fast kinematic vortices in mesoscopic superconductors: the effect of the self-field.
    Cadorim LR; de Oliveira Junior A; Sardella E
    Sci Rep; 2020 Oct; 10(1):18662. PubMed ID: 33122791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evidence for giant vortex states in a mesoscopic superconducting disk.
    Kanda A; Baelus BJ; Peeters FM; Kadowaki K; Ootuka Y
    Phys Rev Lett; 2004 Dec; 93(25):257002. PubMed ID: 15697930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking vortices in superconductors: Extracting singularities from a discretized complex scalar field evolving in time.
    Phillips CL; Guo H; Peterka T; Karpeyev D; Glatz A
    Phys Rev E; 2016 Feb; 93(2):023305. PubMed ID: 26986437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superconducting vortices in CeCoIn5: toward the Pauli-limiting field.
    Bianchi AD; Kenzelmann M; Debeer-Schmitt L; White JS; Forgan EM; Mesot J; Zolliker M; Kohlbrecher J; Movshovich R; Bauer ED; Sarrao JL; Fisk Z; Petrovic C; Eskildsen MR
    Science; 2008 Jan; 319(5860):177-80. PubMed ID: 18187648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of Skyrmions and Pearl Vortices in Superconductor-Chiral Ferromagnet Heterostructures.
    Dahir SM; Volkov AF; Eremin IM
    Phys Rev Lett; 2019 Mar; 122(9):097001. PubMed ID: 30932539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vortex states of a superconducting film from a magnetic dot array.
    Priour DJ; Fertig HA
    Phys Rev Lett; 2004 Jul; 93(5):057003. PubMed ID: 15323726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vortex-antivortex lattices in superconducting films with magnetic pinning arrays.
    Milosević MV; Peeters FM
    Phys Rev Lett; 2004 Dec; 93(26 Pt 1):267006. PubMed ID: 15698012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor.
    Lake B; Rønnow HM; Christensen NB; Aeppli G; Lefmann K; McMorrow DF; Vorderwisch P; Smeibidl P; Mangkorntong N; Sasagawa T; Nohara M; Takagi H; Mason TE
    Nature; 2002 Jan; 415(6869):299-302. PubMed ID: 11797002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of thermal fluctuations on uniform and nonuniform superconducting rings according to the Ginzburg-Landau and the Kramer-Watts-Tobin models.
    Berger J
    J Phys Condens Matter; 2011 Jun; 23(22):225701. PubMed ID: 21572221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.