BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30699396)

  • 1. Resolving fine electromechanical structure of collagen fibrils via sequential excitation piezoresponse force microscopy.
    Jiang P; Huang B; Wei L; Yan F; Huang X; Li Y; Xie S; Pan K; Liu Y; Li J
    Nanotechnology; 2019 May; 30(20):205703. PubMed ID: 30699396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Piezoelectric Heterogeneity in Collagen Type I Fibrils Quantitatively Characterized by Piezoresponse Force Microscopy.
    Kwon J; Cho H
    ACS Biomater Sci Eng; 2020 Dec; 6(12):6680-6689. PubMed ID: 33320620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing molecular polar order in tissues via electromechanical coupling.
    Denning D; Alilat S; Habelitz S; Fertala A; Rodriguez BJ
    J Struct Biol; 2012 Dec; 180(3):409-19. PubMed ID: 22985991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping intrinsic electromechanical responses at the nanoscale via sequential excitation scanning probe microscopy empowered by deep data.
    Huang B; Esfahani EN; Li J
    Natl Sci Rev; 2019 Jan; 6(1):55-63. PubMed ID: 34691831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone.
    Minary-Jolandan M; Yu MF
    ACS Nano; 2009 Jul; 3(7):1859-63. PubMed ID: 19505115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of collagen fibrils from mineralized tissues and evaluation by atomic force microscopy.
    Ryou H; Tay FR; Ossa A; Arola D
    J Mech Behav Biomed Mater; 2023 Feb; 138():105624. PubMed ID: 36543081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and implementation of sequential excitation module for high fidelity piezoresponse force microscopy.
    Song C; Huang B; Feng J; Li J
    Rev Sci Instrum; 2022 Aug; 93(8):083707. PubMed ID: 36050062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing local electromechanical effects in highly conductive electrolytes.
    Balke N; Tselev A; Arruda TM; Jesse S; Chu YH; Kalinin SV
    ACS Nano; 2012 Nov; 6(11):10139-46. PubMed ID: 23106854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromechanical properties of dried tendon and isoelectrically focused collagen hydrogels.
    Denning D; Abu-Rub MT; Zeugolis DI; Habelitz S; Pandit A; Fertala A; Rodriguez BJ
    Acta Biomater; 2012 Aug; 8(8):3073-9. PubMed ID: 22522132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Piezoelectric properties of aligned collagen membranes.
    Denning D; Paukshto MV; Habelitz S; Rodriguez BJ
    J Biomed Mater Res B Appl Biomater; 2014 Feb; 102(2):284-92. PubMed ID: 24030958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bowstring Stretching and Quantitative Imaging of Single Collagen Fibrils via Atomic Force Microscopy.
    Quigley AS; Veres SP; Kreplak L
    PLoS One; 2016; 11(9):e0161951. PubMed ID: 27598334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A decade of piezoresponse force microscopy: progress, challenges, and opportunities.
    Kalinin SV; Rar A; Jesse S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Dec; 53(12):2226-52. PubMed ID: 17186903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of a discrete axial structure in unimodal collagen fibrils.
    Raspanti M; Reguzzoni M; Protasoni M; Martini D
    Biomacromolecules; 2011 Dec; 12(12):4344-7. PubMed ID: 22066528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromechanical Coupling in Collagen Measured under Increasing Relative Humidity.
    Bazaid A; Zhang F; Zhang Q; Neumayer S; Denning D; Habelitz S; Marina Ferreira A; Rodriguez BJ
    Materials (Basel); 2023 Sep; 16(17):. PubMed ID: 37687727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double-layer mediated electromechanical response of amyloid fibrils in liquid environment.
    Nikiforov MP; Thompson GL; Reukov VV; Jesse S; Guo S; Rodriguez BJ; Seal K; Vertegel AA; Kalinin SV
    ACS Nano; 2010 Feb; 4(2):689-98. PubMed ID: 20088597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining tensile testing and structural analysis at the single collagen fibril level.
    Quigley AS; Bancelin S; Deska-Gauthier D; Légaré F; Veres SP; Kreplak L
    Sci Data; 2018 Oct; 5():180229. PubMed ID: 30351303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale Ferroelectric Characterization with Heterodyne Megasonic Piezoresponse Force Microscopy.
    Zeng Q; Wang H; Xiong Z; Huang Q; Lu W; Sun K; Fan Z; Zeng K
    Adv Sci (Weinh); 2021 Apr; 8(8):2003993. PubMed ID: 33898182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties of collagen fibrils determined by buckling analysis.
    Gachon E; Mesquida P
    Acta Biomater; 2022 Sep; 149():60-68. PubMed ID: 35803503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional nanoscale structural and functional imaging in individual collagen type I fibrils.
    Harnagea C; Vallières M; Pfeffer CP; Wu D; Olsen BR; Pignolet A; Légaré F; Gruverman A
    Biophys J; 2010 Jun; 98(12):3070-7. PubMed ID: 20550920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ studies of nanoscale electromechanical behavior of nacre under flexural stresses using band excitation PFM.
    Li T; Chen L; Zeng K
    Acta Biomater; 2013 Apr; 9(4):5903-12. PubMed ID: 23305937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.