These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30699396)

  • 41. Creating nanoscopic collagen matrices using atomic force microscopy.
    Jiang F; Khairy K; Poole K; Howard J; Müller DJ
    Microsc Res Tech; 2004 Aug; 64(5-6):435-40. PubMed ID: 15549696
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Peritubular dentin lacks piezoelectricity.
    Habelitz S; Rodriguez BJ; Marshall SJ; Marshall GW; Kalinin SV; Gruverman A
    J Dent Res; 2007 Sep; 86(9):908-11. PubMed ID: 17720865
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surface characterisation and biomechanical analysis of the sclera by atomic force microscopy.
    Grant CA; Thomson NH; Savage MD; Woon HW; Greig D
    J Mech Behav Biomed Mater; 2011 May; 4(4):535-40. PubMed ID: 21396602
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative Electromechanical Atomic Force Microscopy.
    Collins L; Liu Y; Ovchinnikova OS; Proksch R
    ACS Nano; 2019 Jul; 13(7):8055-8066. PubMed ID: 31268678
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Studying collagen self-assembly by time-lapse high-resolution atomic force microscopy.
    Franz CM; Muller DJ
    Methods Mol Biol; 2011; 736():97-107. PubMed ID: 21660723
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microstructural characteristics of extracellular matrix produced by stromal fibroblasts.
    Crabb RA; Chau EP; Decoteau DM; Hubel A
    Ann Biomed Eng; 2006 Oct; 34(10):1615-27. PubMed ID: 17016762
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Imaging of collagen type III in fluid by atomic force microscopy.
    Taatjes DJ; Quinn AS; Bovill EG
    Microsc Res Tech; 1999 Mar; 44(5):347-52. PubMed ID: 10090209
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization.
    Gutsmann T; Fantner GE; Kindt JH; Venturoni M; Danielsen S; Hansma PK
    Biophys J; 2004 May; 86(5):3186-93. PubMed ID: 15111431
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vector piezoresponse force microscopy.
    Kalinin SV; Rodriguez BJ; Jesse S; Shin J; Baddorf AP; Gupta P; Jain H; Williams DB; Gruverman A
    Microsc Microanal; 2006 Jun; 12(3):206-20. PubMed ID: 17481357
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Collagen fibrils: nanoscale ropes.
    Bozec L; van der Heijden G; Horton M
    Biophys J; 2007 Jan; 92(1):70-5. PubMed ID: 17028135
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Collagen structure deterioration in the skin of patients with pelvic organ prolapse determined by atomic force microscopy.
    Kotova SL; Timashev PS; Guller AE; Shekhter AB; Misurkin PI; Bagratashvili VN; Solovieva AB
    Microsc Microanal; 2015 Apr; 21(2):324-33. PubMed ID: 25740571
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural and mechanical multi-scale characterization of white New-Zealand rabbit Achilles tendon.
    Kahn CJ; Dumas D; Arab-Tehrany E; Marie V; Tran N; Wang X; Cleymand F
    J Mech Behav Biomed Mater; 2013 Oct; 26():81-9. PubMed ID: 23811279
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force microscopy.
    Rodriguez BJ; Jesse S; Baddorf AP; Kalinin SV
    Phys Rev Lett; 2006 Jun; 96(23):237602. PubMed ID: 16803404
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamic mechanical analysis of collagen fibrils at the nanoscale.
    Grant CA; Phillips MA; Thomson NH
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):165-70. PubMed ID: 22100091
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization via atomic force microscopy of discrete plasticity in collagen fibrils from mechanically overloaded tendons: Nano-scale structural changes mimic rope failure.
    Baldwin SJ; Kreplak L; Lee JM
    J Mech Behav Biomed Mater; 2016 Jul; 60():356-366. PubMed ID: 26925699
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of surface stiffness and probe-sample dissipation using the band excitation method of atomic force microscopy: a numerical analysis.
    Kareem AU; Solares SD
    Nanotechnology; 2012 Jan; 23(1):015706. PubMed ID: 22155951
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The stiffness of collagen fibrils influences vascular smooth muscle cell phenotype.
    McDaniel DP; Shaw GA; Elliott JT; Bhadriraju K; Meuse C; Chung KH; Plant AL
    Biophys J; 2007 Mar; 92(5):1759-69. PubMed ID: 17158565
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanoscale Swelling Heterogeneities in Type I Collagen Fibrils.
    Spitzner EC; Röper S; Zerson M; Bernstein A; Magerle R
    ACS Nano; 2015 Jun; 9(6):5683-94. PubMed ID: 25961780
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Collagen-collagen interactions mediated by plant-derived proanthocyanidins: A spectroscopic and atomic force microscopy study.
    Vidal CM; Zhu W; Manohar S; Aydin B; Keiderling TA; Messersmith PB; Bedran-Russo AK
    Acta Biomater; 2016 Sep; 41():110-8. PubMed ID: 27208639
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Introduction to the IEEE International Symposium on Applications of Ferroelectrics and International Symposium on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials.
    Ye ZG; Tan X; Bokov AA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Sep; 59(9):1853-4. PubMed ID: 23007749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.