These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 30699397)

  • 1. Estimating blood pressure trends and the nocturnal dip from photoplethysmography.
    Radha M; de Groot K; Rajani N; Wong CCP; Kobold N; Vos V; Fonseca P; Mastellos N; Wark PA; Velthoven N; Haakma R; Aarts RM
    Physiol Meas; 2019 Feb; 40(2):025006. PubMed ID: 30699397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Features from the photoplethysmogram and the electrocardiogram for estimating changes in blood pressure.
    Finnegan E; Davidson S; Harford M; Watkinson P; Tarassenko L; Villarroel M
    Sci Rep; 2023 Jan; 13(1):986. PubMed ID: 36653426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches.
    Khalid SG; Zhang J; Chen F; Zheng D
    J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood pressure estimation and classification using a reference signal-less photoplethysmography signal: a deep learning framework.
    Pankaj ; Kumar A; Komaragiri R; Kumar M
    Phys Eng Sci Med; 2023 Dec; 46(4):1589-1605. PubMed ID: 37747644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nocturnal Blood Pressure Estimation from Sleep Plethysmography Using Machine Learning.
    Yilmaz G; Lyu X; Ong JL; Ling LH; Penzel T; Yeo BTT; Chee MWL
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoplethysmography-based cuffless blood pressure estimation: an image encoding and fusion approach.
    Liu Y; Yu J; Mou H
    Physiol Meas; 2023 Dec; 44(12):. PubMed ID: 38099538
    [No Abstract]   [Full Text] [Related]  

  • 8. A Continuous Blood Pressure Estimation Method Using Photoplethysmography by GRNN-Based Model.
    Li Z; He W
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous non-invasive determination of nocturnal blood pressure variation using photoplethysmographic pulse wave signals: comparison of pulse propagation time, pulse transit time and RR-interval.
    Fischer C; Penzel T
    Physiol Meas; 2019 Jan; 40(1):014001. PubMed ID: 30523856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques.
    Miao F; Wen B; Hu Z; Fortino G; Wang XP; Liu ZD; Tang M; Li Y
    Artif Intell Med; 2020 Aug; 108():101919. PubMed ID: 32972654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method for continuous blood pressure estimation based on a single-channel photoplethysmogram signal.
    Hu Q; Deng X; Wang A; Yang C
    Physiol Meas; 2021 Jan; 41(12):125009. PubMed ID: 33166940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions.
    Abay TY; Kyriacou PA
    J Clin Monit Comput; 2018 Jun; 32(3):447-455. PubMed ID: 28547651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Cuffless Continuous Blood Pressure Estimation Using Deep Learning Model.
    Li YH; Harfiya LN; Purwandari K; Lin YD
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 33007891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust blood pressure estimation from finger photoplethysmography using age-dependent linear models.
    Xing X; Ma Z; Zhang M; Gao X; Li Y; Song M; Dong WF
    Physiol Meas; 2020 Mar; 41(2):025007. PubMed ID: 32050194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of cuffless blood pressure estimation method based on multiple physiological parameters.
    Zhang Y; Zhou C; Huang Z; Ye X
    Physiol Meas; 2021 Jun; 42(5):. PubMed ID: 33857923
    [No Abstract]   [Full Text] [Related]  

  • 16. Continuous cuffless blood pressure monitoring using photoplethysmography-based PPG2BP-net for high intrasubject blood pressure variations.
    Joung J; Jung CW; Lee HC; Chae MJ; Kim HS; Park J; Shin WY; Kim C; Lee M; Choi C
    Sci Rep; 2023 May; 13(1):8605. PubMed ID: 37244974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust Feature Selection for BP Estimation in Multiple Populations: Towards Cuffless Ambulatory BP Monitoring.
    Cisnal A; Li Y; Fuchs B; Ejtehadi M; Riener R; Paez-Granados D
    IEEE J Biomed Health Inform; 2024 Oct; 28(10):5768-5779. PubMed ID: 38857137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive Cuffless Blood Pressure Estimation Using Pulse Transit Time and Impedance Plethysmography.
    Huynh TH; Jafari R; Chung WY
    IEEE Trans Biomed Eng; 2019 Apr; 66(4):967-976. PubMed ID: 30130167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Personalized Blood Pressure Estimation Using Photoplethysmography: A Transfer Learning Approach.
    Leitner J; Chiang PH; Dey S
    IEEE J Biomed Health Inform; 2022 Jan; 26(1):218-228. PubMed ID: 34077378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating Blood Pressure from the Photoplethysmogram Signal and Demographic Features Using Machine Learning Techniques.
    Chowdhury MH; Shuzan MNI; Chowdhury MEH; Mahbub ZB; Uddin MM; Khandakar A; Reaz MBI
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32492902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.