These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30699794)

  • 1. Polymyxa graminis Isolates from Australia: Identification in Wheat Roots and Soil, Molecular Characterization, and Wide Genetic Diversity.
    Cox BA; Luo H; Jones RAC
    Plant Dis; 2014 Nov; 98(11):1567-1575. PubMed ID: 30699794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribotypes of Polymyxa graminis in Wheat Samples Infected with Soilborne Wheat Viruses in China.
    Xu Y; Hu L; Li L; Zhang Y; Sun B; Meng X; Zhu T; Sun Z; Hong G; Chen Y; Yan F; Yang J; Li J; Chen J
    Plant Dis; 2018 May; 102(5):948-954. PubMed ID: 30673393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First Report of Polymyxa graminis f. sp. temperata, a Vector of Soilborne Cereal Viruses in the Czech Republic.
    Ketta H; Zouhar M; Ryšánek P
    Plant Dis; 2011 Mar; 95(3):353. PubMed ID: 30743523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and Quantification of Polymyxa graminis f. sp. temperata and P. graminis f. sp. tepida on Barley and Wheat.
    Vaïanopoulos C; Bragard C; Moreau V; Maraite H; Legrève A
    Plant Dis; 2007 Jul; 91(7):857-864. PubMed ID: 30780397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A certain but non-exclusive association between Polymyxa graminis special forms and cereals.
    Vaïanopoulos C; Bragard C; Dieryck B; Moreau V; Maraite H; Legréve A
    Commun Agric Appl Biol Sci; 2007; 72(4):745-50. PubMed ID: 18396804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of conventional and quantitative real-time PCR assays for Polymyxa graminis to examine host plant resistance, inoculum levels and intraspecific variation.
    Ward E; Kanyuka K; Motteram J; Kornyukhin D; Adams MJ
    New Phytol; 2005 Mar; 165(3):875-85. PubMed ID: 15720699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soilborne wheat mosaic virus movement protein and RNA and wheat spindle streak mosaic virus coat protein accumulate inside resting spores of their vector, Polymyxa graminis.
    Driskel BA; Doss P; Littlefield LJ; Walker NR; Verchot-Lubicz J
    Mol Plant Microbe Interact; 2004 Jul; 17(7):739-48. PubMed ID: 15242168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribosomal DNA analyses reveal greater sequence variation in Polymyxa species than previously thought and indicate the possibility of new ribotype-host-virus associations.
    Smith MJ; Adams MJ; Ward E
    Environ Microbiol Rep; 2013 Feb; 5(1):143-50. PubMed ID: 23757143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peanut Clump virus transmission by Polymyxa graminis under controlled conditions.
    Dieryck B; Weyns J; Van Hese V; Bragard C; Legrève A
    Commun Agric Appl Biol Sci; 2008; 73(2):71-4. PubMed ID: 19226743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection and relative quantitation of Soil-borne cereal mosaic virus (SBCMV) and Polymyxa graminis in winter wheat using real-time PCR (TaqMan).
    Ratti C; Budge G; Ward L; Clover G; Rubies-Autonell C; Henry C
    J Virol Methods; 2004 Dec; 122(1):95-103. PubMed ID: 15488626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil-borne viruses affecting cereals: known for long but still a threat.
    Kühne T
    Virus Res; 2009 May; 141(2):174-83. PubMed ID: 19159654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic Diversity in Australian Populations of Puccinia graminis f. sp. avenae.
    Keiper FJ; Haque MS; Hayden MJ; Park RF
    Phytopathology; 2006 Jan; 96(1):96-104. PubMed ID: 18944209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acquisition and transmission of Peanut clump virus by Polymyxa graminis on cereal species.
    Dieryck B; Weyns J; Doucet D; Bragard C; Legrève A
    Phytopathology; 2011 Oct; 101(10):1149-58. PubMed ID: 21916623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Genetic Characterization of Olpidium virulentus Isolates Associated with Big-Vein Diseased Lettuce Plants.
    Maccarone LD; Barbetti MJ; Sivasithamparam K; Jones RAC
    Plant Dis; 2010 May; 94(5):563-569. PubMed ID: 30754470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a multiplexed PCR detection method for Barley and Cereal yellow dwarf viruses, Wheat spindle streak virus, Wheat streak mosaic virus and Soil-borne wheat mosaic virus.
    Deb M; Anderson JM
    J Virol Methods; 2008 Mar; 148(1-2):17-24. PubMed ID: 18063125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of a system for Polymyxa graminis infection and transmission of wheat yellow mosaic virus].
    Tian Z; Chen X; Zhu K; Yu J; Liu Y
    Wei Sheng Wu Xue Bao; 2000 Aug; 40(4):352-8. PubMed ID: 12548954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First Record of Barley yellow striate mosaic virus, Barley stripe mosaic virus, and Wheat dwarf virus Infecting Cereal Crops in Tunisia.
    Najar A; Makkouk KM; Kumari SG
    Plant Dis; 2000 Sep; 84(9):1045. PubMed ID: 30832011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A genetic analysis of the resistance in barley to
    Okada K; Kato T; Oikawa T; Komatsuda T; Namai K
    Breed Sci; 2020 Dec; 70(5):617-622. PubMed ID: 33603558
    [No Abstract]   [Full Text] [Related]  

  • 19. Differentiation Among Blumeria graminis f. sp. tritici Isolates Originating from Wild Versus Domesticated Triticum Species in Israel.
    Ben-David R; Parks R; Dinoor A; Kosman E; Wicker T; Keller B; Cowger C
    Phytopathology; 2016 Aug; 106(8):861-70. PubMed ID: 27019062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Monitoring of cereal viruses in agrocenoses of Ukraine].
    Snihur HO; Budzanivs'ka IH; Polishchuk VP
    Mikrobiol Z; 2005; 67(6):88-95. PubMed ID: 16493890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.