These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30699911)

  • 1. A Clutter-Analysis-Based STAP for Moving FOD Detection on Runways.
    Yang X; Huo K; Zhang X; Jiang W; Chen Y
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30699911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FOD Detection Method Based on Iterative Adaptive Approach for Millimeter-Wave Radar.
    Wan Y; Liang X; Bu X; Liu Y
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foreign Object Debris Automatic Target Detection for Millimeter-Wave Surveillance Radar.
    Qin F; Bu X; Liu Y; Liang X; Xin J
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A FOD Detection Approach on Millimeter-Wave Radar Sensors Based on Optimal VMD and SVDD.
    Zhong J; Gou X; Shu Q; Liu X; Zeng Q
    Sensors (Basel); 2021 Feb; 21(3):. PubMed ID: 33540656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Altitude Windshear Wind Speed Estimation Method Based on KASPICE-STAP.
    Li H; Chen Y; Feng K; Jin M
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bistatic Forward-Looking SAR Moving Target Detection Method Based on Joint Clutter Cancellation in Echo-Image Domain with Three Receiving Channels.
    Liu Z; Li Z; Yu H; Wu J; Huang Y; Yang J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30413122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Anti-FOD Method Based on CA-CM-CFAR for MMW Radar in Complex Clutter Background.
    Yang X; Huo K; Su J; Zhang X; Jiang W
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Single-Dataset-Based Pre-Processing Joint Domain Localized Algorithm for Clutter-Suppression in Shipborne High-Frequency Surface-Wave Radar.
    Guo L; Zhang X; Yao D; Yang Q; Bai Y; Deng W
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Space-Time Adaptive Processing Based on Modified Sparse Learning via Iterative Minimization for Conformal Array Radar.
    Ren B; Wang T
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Statistical Method for Determining the Clutter Covariance Matrix in Spatial-Temporal Adaptive Processing of a Radar Signal.
    Kawalec A; Ślesicka A; Ślesicki B
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Three-Stage Inter-Channel Calibration Approach for Passive Radar on Moving Platforms Exploiting the Minimum Variance Power Spectrum.
    Wojaczek P; Cristallini D; O'Hagan DW; Colone F; Blasone GP; Lombardo P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meshless Search SR-STAP for Airborne Radar Based on Meta-Heuristic Algorithms.
    Hou Y; Zhang Y; Gui W; Wang D; Dong W
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clutter Suppression Method for Off-Grid Effects Mitigation in Airborne Passive Radars with Contaminated Reference Signals.
    Deng Y; Li W; Zhang S; Wang F; Xiao W; Cui Z
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clutter Subspace Characteristics-Aided Space-Time Adaptive Outlier Sample Selection Method.
    Fu D; Liao G; Xu J
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33946952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small Foreign Object Debris Detection for Millimeter-Wave Radar Based on Power Spectrum Features.
    Ni P; Miao C; Tang H; Jiang M; Wu W
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32325656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Space-Time Adaptive Processing Method Based on Sparse Bayesian Learning for Maneuvering Airborne Radar.
    Zhang S; Wang T; Liu C; Wang D
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35897983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Two-Stage STAP Method Based on Fine Doppler Localization and Sparse Bayesian Learning in the Presence of Arbitrary Array Errors.
    Liu K; Wang T; Wu J; Chen J
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Clutter Suppression Method Based on Sparse Bayesian Learning for Airborne Passive Bistatic Radar with Contaminated Reference Signal.
    Wang J; Wang J; Zhu Y; Zhao D
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Efficient Adaptive Angle-Doppler Compensation Approach for Non-Sidelooking Airborne Radar STAP.
    Shen M; Yu J; Wu D; Zhu D
    Sensors (Basel); 2015 Jun; 15(6):13121-31. PubMed ID: 26053755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Application of the Orthogonal Matching Pursuit Algorithm in Space-Time Adaptive Processing.
    Ślesicka A; Kawalec A
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.