These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 30700026)

  • 1. Rheological Issues in Carbon-Based Inks for Additive Manufacturing.
    O'Mahony C; Haq EU; Sillien C; Tofail SAM
    Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30700026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Biomaterial Ink Viscosity Properties and Optimization of the Printing Process Based on Pattern Path Planning.
    Wu J; Wu C; Zou S; Li X; Ho B; Sun R; Liu C; Chen M
    Bioengineering (Basel); 2023 Nov; 10(12):. PubMed ID: 38135949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Hydrocolloids on Rheological Properties and Printability of Vegetable Inks for 3D Food Printing.
    Kim HW; Lee JH; Park SM; Lee MH; Lee IW; Doh HS; Park HJ
    J Food Sci; 2018 Dec; 83(12):2923-2932. PubMed ID: 30506688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier.
    Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eucalyptus bleached kraft pulp-ionic liquid inks for 3D printing of ionogels and hydrogels.
    Hopson C; Rigual V; Alonso MV; Oliet M; Rodriguez F
    Carbohydr Polym; 2023 Aug; 313():120897. PubMed ID: 37182980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Ink Writing of Carbon-Doped Polymeric Composite Ink: A Review on Its Requirements and Applications.
    Raj R; Dixit AR
    3D Print Addit Manuf; 2023 Aug; 10(4):828-854. PubMed ID: 37609584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image-based assessment and machine learning-enabled prediction of printability of polysaccharides-based food ink for 3D printing.
    Lu Y; Rai R; Nitin N
    Food Res Int; 2023 Nov; 173(Pt 2):113384. PubMed ID: 37803721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs.
    Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status.
    Das S; Jegadeesan JT; Basu B
    Biomacromolecules; 2024 Apr; 25(4):2156-2221. PubMed ID: 38507816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-printable, lightweight, and electrically conductive metal inks based on evaporable emulsion templates jammed with natural rheology modifiers.
    Young Ryu S; Kwak C; Kim J; Kim S; Cho H; Lee J
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):758-767. PubMed ID: 36029590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheological Behavior and Printability Study of Tri-Calcium Phosphate Ceramic Inks for Direct Ink Writing Method.
    Paul D L B; Praveen AS; Čepová L; Elangovan M
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
    Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S
    Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges.
    Shahbazi M; Jäger H
    ACS Appl Bio Mater; 2021 Jan; 4(1):325-369. PubMed ID: 35014287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly conductive graphene/carbon black screen printing inks for flexible electronics.
    Liu L; Shen Z; Zhang X; Ma H
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):12-21. PubMed ID: 32814220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robocasting of advanced ceramics: ink optimization and protocol to predict the printing parameters - A review.
    Lamnini S; Elsayed H; Lakhdar Y; Baino F; Smeacetto F; Bernardo E
    Heliyon; 2022 Sep; 8(9):e10651. PubMed ID: 36164511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Balancing Functionality and Printability: High-Loading Polymer Resins for Direct Ink Writing.
    Legett SA; Torres X; Schmalzer AM; Pacheco A; Stockdale JR; Talley S; Robison T; Labouriau A
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping the Volume Transfer of Graphene-Based Inks with the Gravure Printing Process: Influence of Rheology and Printing Parameters.
    Fakhari A; Fernandes C; Galindo-Rosales FJ
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards the Development of 3D-Printed Food: A Rheological and Mechanical Approach.
    Tejada-Ortigoza V; Cuan-Urquizo E
    Foods; 2022 Apr; 11(9):. PubMed ID: 35563914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitosan and Whey Protein Bio-Inks for 3D and 4D Printing Applications with Particular Focus on Food Industry.
    Yang W; Tu A; Ma Y; Li Z; Xu J; Lin M; Zhang K; Jing L; Fu C; Jiao Y; Huang L
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.