These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 30700030)
1. Incineration Kinetic Analysis of Upstream Oily Sludge and Sectionalized Modeling in Differential/Integral Method. Zhang Y; Wang X; Qi Y; Xi F Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30700030 [TBL] [Abstract][Full Text] [Related]
2. Low-temperature co-pyrolysis behaviours and kinetics of oily sludge: effect of agricultural biomass. Zhou X; Jia H; Qu C; Fan D; Wang C Environ Technol; 2017 Feb; 38(3):361-369. PubMed ID: 27242020 [TBL] [Abstract][Full Text] [Related]
3. Thermogravimetric study and kinetic analysis of dried industrial sludge pyrolysis. Liu G; Song H; Wu J Waste Manag; 2015 Jul; 41():128-33. PubMed ID: 25892437 [TBL] [Abstract][Full Text] [Related]
4. Kinetic analysis on the non-isothermal degradation of plum stone waste by thermogravimetric analysis and integral master-plots method. Ceylan S Waste Manag Res; 2015 Apr; 33(4):345-52. PubMed ID: 25784691 [TBL] [Abstract][Full Text] [Related]
5. Combustion characteristics of spent catalyst and paper sludge in an internally circulating fluidized-bed combustor. Roh SA; Jung DS; Kim SD; Guy C J Air Waste Manag Assoc; 2005 Sep; 55(9):1269-76. PubMed ID: 16259422 [TBL] [Abstract][Full Text] [Related]
6. Experimental and kinetic modeling of oxygen-enriched air combustion of paper mill sludge. Liu K; Ma XQ; Xiao HM Waste Manag; 2010 Jul; 30(7):1206-11. PubMed ID: 20392627 [TBL] [Abstract][Full Text] [Related]
7. Application of sectionalized single-step reaction approach (SSRA) and distributed activation energy model (DAEM) on the pyrolysis kinetics model of upstream oily sludge: Construction procedure and data reproducibility comparison. Qi Y; Ge B; Cao Q; Xi F; Shi X; Si Y; Wang X; Gao B; Yue Q; Xu X Sci Total Environ; 2021 Jun; 774():145751. PubMed ID: 33611005 [TBL] [Abstract][Full Text] [Related]
8. Kinetics of the pyrolysis of arundo, sawdust, corn stover and switch grass biomass by thermogravimetric analysis using a multi-stage model. Biney PO; Gyamerah M; Shen J; Menezes B Bioresour Technol; 2015 Mar; 179():113-122. PubMed ID: 25531683 [TBL] [Abstract][Full Text] [Related]
9. Effects of sewage sludge blending on the coal combustion: a thermogravimetric assessment. Otero M; Gómez X; García AI; Morán A Chemosphere; 2007 Nov; 69(11):1740-50. PubMed ID: 17624399 [TBL] [Abstract][Full Text] [Related]
10. Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry. Shen J; Igathinathane C; Yu M; Pothula AK Bioresour Technol; 2015 Jun; 185():89-98. PubMed ID: 25756207 [TBL] [Abstract][Full Text] [Related]
11. Thermogravimetric characterization of dairy manure as pyrolysis and combustion feedstocks. Wu H; Hanna MA; Jones DD Waste Manag Res; 2012 Oct; 30(10):1066-71. PubMed ID: 22767875 [TBL] [Abstract][Full Text] [Related]
12. Kinetic simulation and prediction of pyrolysis process for non-metallic fraction of waste printed circuit boards by discrete distributed activation energy model compared with isoconversional method. Chen Y; Yang J; Zhang Y; Liu K; Liang S; Xu X; Hu J; Yao H; Xiao B Environ Sci Pollut Res Int; 2018 Feb; 25(4):3636-3646. PubMed ID: 29164464 [TBL] [Abstract][Full Text] [Related]
13. Auxiliary effect of CO Wang Z; Wang Z; Gong Z; Li X; Chu Z; Du L; Wu J; Jin Z J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(6):460-469. PubMed ID: 35603685 [TBL] [Abstract][Full Text] [Related]
14. Thermogravimetric analysis of biowastes during combustion. Otero M; Sanchez ME; Gómez X; Morán A Waste Manag; 2010 Jul; 30(7):1183-7. PubMed ID: 20079622 [TBL] [Abstract][Full Text] [Related]
15. Kinetic analysis of slow pyrolysis of oily sludge at medium temperature (350 ℃-650 ℃) and the effects of heating rate on pyrolysis. Song S; Liu X; Jiang X; Peng T; Gao H; Xu Z Environ Technol; 2024 Sep; 45(23):4900-4913. PubMed ID: 37950631 [No Abstract] [Full Text] [Related]
16. Anion leaching from refinery oily sludge and ash from incineration of oily sludge stabilized/solidified with cement. Part I. Experimental results. Karamalidis AK; Voudrias EA Environ Sci Technol; 2008 Aug; 42(16):6116-23. PubMed ID: 18767675 [TBL] [Abstract][Full Text] [Related]
17. Pyrolysis and gasification of typical components in wastes with macro-TGA. Meng A; Chen S; Long Y; Zhou H; Zhang Y; Li Q Waste Manag; 2015 Dec; 46():247-56. PubMed ID: 26318422 [TBL] [Abstract][Full Text] [Related]
18. Anion leaching from refinery oily sludge and ash from incineration of oily sludge stabilized/solidified with cement. Part II. Modeling. Karamalidis AK; Voudrias EA Environ Sci Technol; 2008 Aug; 42(16):6124-30. PubMed ID: 18767676 [TBL] [Abstract][Full Text] [Related]
19. A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis. Agrawal A; Chakraborty S Bioresour Technol; 2013 Jan; 128():72-80. PubMed ID: 23196224 [TBL] [Abstract][Full Text] [Related]
20. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae. Gai C; Zhang Y; Chen WT; Zhang P; Dong Y Bioresour Technol; 2013 Dec; 150():139-48. PubMed ID: 24161552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]