These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 30700059)

  • 1. LED Mini Lidar for Atmospheric Application.
    Shiina T
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30700059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameter Optimization and Development of Mini Infrared Lidar for Atmospheric Three-Dimensional Detection.
    Kuang Z; Liu D; Wu D; Wang Z; Li C; Deng Q
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atmospheric Thermodynamic Profiling through the Use of a Micro-Pulse Raman Lidar System: Introducing the Compact Raman Lidar MARCO.
    Di Girolamo P; Franco N; Di Paolantonio M; Summa D; Dionisi D
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable 2.1-,microm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles.
    Cha S; Chan KP; Killinger DK
    Appl Opt; 1991 Sep; 30(27):3938-43. PubMed ID: 20706485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrapulse temporal and wavelength shifts of a high-power 2.1-µm Ho:YAG laser and their potential influence on atmospheric lidar measurements.
    Vaidyanathan M; Killinger DK
    Appl Opt; 1994 Nov; 33(33):7747-53. PubMed ID: 20962985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system.
    Mei L; Brydegaard M
    Opt Express; 2015 Nov; 23(24):A1613-28. PubMed ID: 26698808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-wavelength polarization Scheimpflug lidar system developed for remote sensing of atmospheric aerosols.
    Kong Z; Ma T; Chen K; Gong Z; Mei L
    Appl Opt; 2019 Nov; 58(31):8612-8621. PubMed ID: 31873345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compact and movable ozone differential absorption lidar system based on an all-solid-state, tuning-free laser source.
    Liu P; Zhang T; Sun X; Fan G; Xiang Y; Fu Y; Dong Y
    Opt Express; 2020 Apr; 28(9):13786-13800. PubMed ID: 32403846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remote sensing of atmospheric NO
    Mei L; Guan P; Kong Z
    Opt Express; 2017 Oct; 25(20):A953-A962. PubMed ID: 29041305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-Frequency Doppler LiDAR Based on External Optical Feedback Effect in a Laser.
    Chen Z; Yu Y; Ruan Y; Nie B; Xi J; Guo Q; Tong J
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atmospheric CO
    Larsson J; Bood J; Xu CT; Yang X; Lindberg R; Laurell F; Brydegaard M
    Opt Express; 2019 Jun; 27(12):17348-17358. PubMed ID: 31252945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an atmospheric polarization Scheimpflug lidar system based on a time-division multiplexing scheme.
    Mei L; Guan P
    Opt Lett; 2017 Sep; 42(18):3562-3565. PubMed ID: 28914902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Langley mobile ozone lidar: ozone and aerosol atmospheric profiling for air quality research.
    De Young R; Carrion W; Ganoe R; Pliutau D; Gronoff G; Berkoff T; Kuang S
    Appl Opt; 2017 Jan; 56(3):721-730. PubMed ID: 28157936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Profiling atmospheric water vapor using a fiber laser lidar system.
    De Young RJ; Barnes NP
    Appl Opt; 2010 Feb; 49(4):562-7. PubMed ID: 20119001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of a violet Scheimpflug lidar system for atmospheric aerosol studies.
    Mei L; Kong Z; Guan P
    Opt Express; 2018 Mar; 26(6):A260-A274. PubMed ID: 29609357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle profiling and classification by a dual-band continuous-wave lidar system.
    Zhao G; Malmqvist E; Török S; Bengtsson PE; Svanberg S; Bood J; Brydegaard M
    Appl Opt; 2018 Dec; 57(35):10164-10171. PubMed ID: 30645222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-range optical air data measurements for aircraft control using rotational Raman backscatter.
    Fraczek M; Behrendt A; Schmitt N
    Opt Express; 2013 Jul; 21(14):16398-414. PubMed ID: 23938491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements.
    Munk A; Jungbluth B; Strotkamp M; Hoffmann HD; Poprawe R; Höffner J; Lübken FJ
    Opt Express; 2018 Jun; 26(12):14928-14935. PubMed ID: 30114797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diode laser--pumped solid-state lasers.
    Byer RL
    Science; 1988 Feb; 239(4841):742-7. PubMed ID: 17832940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudo-random modulation continuous-wave lidar for the measurements of mesopause region sodium density.
    Li F; Li T; Fang X; Tian B; Dou X
    Opt Express; 2021 Jan; 29(2):1932-1944. PubMed ID: 33726397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.