These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 30700089)
21. An unexpected bispericyclic transition structure leading to 4+2 and 2+4 cycloadducts in the endo dimerization of cyclopentadiene. Caramella P; Quadrelli P; Toma L J Am Chem Soc; 2002 Feb; 124(7):1130-1. PubMed ID: 11841256 [TBL] [Abstract][Full Text] [Related]
22. Cryptic post-transition state bifurcations that reduce the efficiency of lactone-forming Rh-carbenoid C-H insertions. Hare SR; Tantillo DJ Chem Sci; 2017 Feb; 8(2):1442-1449. PubMed ID: 28451284 [TBL] [Abstract][Full Text] [Related]
23. Theoretical elucidation of the mechanism of the cycloaddition between nitrone ylides and electron-deficient alkenes. Merino P; Tejero T; Díez-Martínez A J Org Chem; 2014 Mar; 79(5):2189-202. PubMed ID: 24548190 [TBL] [Abstract][Full Text] [Related]
24. Wave packets in a bifurcating region of an energy landscape: Diels-Alder dimerization of cyclopentadiene. Lasorne B; Dive G; Desouter-Lecomte M J Chem Phys; 2005 May; 122(18):184304. PubMed ID: 15918701 [TBL] [Abstract][Full Text] [Related]
25. Oxidopyridinium Cycloadditions Revisited: A Combined Computational and Experimental Study on the Reactivity of 1-(2-Pyrimidyl)-3-oxidopyridinium Betaine. Yamamoto Y; Shizume Y; Tazawa S; Yasui T J Org Chem; 2023 Mar; 88(5):3193-3207. PubMed ID: 36802575 [TBL] [Abstract][Full Text] [Related]
26. Highly diastereoselective 1,3-dipolar cycloaddition reactions of trans-2-methylene-1,3-dithiolane 1,3-dioxide with 3-oxidopyridinium and 3-oxidopyrylium betaines: a route to the tropane skeleton. Aggarwal VK; Grainger RS; Newton GK; Spargo PL; Hobson AD; Adams H Org Biomol Chem; 2003 Jun; 1(11):1884-93. PubMed ID: 12945769 [TBL] [Abstract][Full Text] [Related]
27. Tandem cyclization-cycloaddition behavior of rhodium carbenoids with carbonyl compounds: stereoselective studies on the construction of novel epoxy-bridged tetrahydropyranone frameworks. Muthusamy S; Babu SA; Gunanathan C; Ganguly B; Suresh E; Dastidar P J Org Chem; 2002 Nov; 67(23):8019-33. PubMed ID: 12423129 [TBL] [Abstract][Full Text] [Related]
28. A cornucopia of cycloadducts: theoretical predictions of the mechanisms and products of the reactions of cyclopentadiene with cycloheptatriene. Leach AG; Goldstein E; Houk KN J Am Chem Soc; 2003 Jul; 125(27):8330-9. PubMed ID: 12837105 [TBL] [Abstract][Full Text] [Related]
29. Origin of the "endo rule" in Diels-Alder reactions. Fernández I; Bickelhaupt FM J Comput Chem; 2014 Feb; 35(5):371-6. PubMed ID: 24449044 [TBL] [Abstract][Full Text] [Related]
30. Origins of the Unfavorable Activation and Reaction Energies of 1-Azadiene Heterocycles Compared to 2-Azadiene Heterocycles in Diels-Alder Reactions. Fell JS; Martin BN; Houk KN J Org Chem; 2017 Feb; 82(4):1912-1919. PubMed ID: 28150495 [TBL] [Abstract][Full Text] [Related]
31. Temperature effects on the branching dynamics in the model ambimodal (6 + 4)/(4 + 2) intramolecular cycloaddition reaction. Murakami T; Hayashi D; Kikuma Y; Yamaki K; Takayanagi T J Comput Chem; 2024 Dec; 45(32):2778-2785. PubMed ID: 39166899 [TBL] [Abstract][Full Text] [Related]
32. Theoretical revisit of regioselectivities of diels-alder reactions: orbital-based reevaluation of multicentered reactivity in terms of reactive hybrid orbitals. Hirao H; Ohwada T J Phys Chem A; 2005 Feb; 109(5):816-24. PubMed ID: 16838952 [TBL] [Abstract][Full Text] [Related]
33. Asymmetric Brønsted Base Catalyzed and Directed [3+2] Cycloaddition of 2-Acyl Cycloheptatrienes with Azomethine Ylides. Lauridsen VH; Ibsen L; Blom J; Jørgensen KA Chemistry; 2016 Mar; 22(10):3259-3263. PubMed ID: 26807826 [TBL] [Abstract][Full Text] [Related]
35. Computational analysis of the stereochemical outcome in the imidazolidinone-catalyzed enantioselective (4 + 3)-cycloaddition reaction. Krenske EH; Houk KN; Harmata M J Org Chem; 2015 Jan; 80(2):744-50. PubMed ID: 25525966 [TBL] [Abstract][Full Text] [Related]
36. Organocatalytic, enantioselective intramolecular [6+2] cycloaddition reaction for the formation of tricyclopentanoids and insight on its mechanism from a computational study. Hayashi Y; Gotoh H; Honma M; Sankar K; Kumar I; Ishikawa H; Konno K; Yui H; Tsuzuki S; Uchimaru T J Am Chem Soc; 2011 Dec; 133(50):20175-85. PubMed ID: 22050305 [TBL] [Abstract][Full Text] [Related]
37. A computational study: reactivity difference between phosphine- and amine-catalyzed cycloadditions of allenoates and enones. Huang GT; Lankau T; Yu CH J Org Chem; 2014 Feb; 79(4):1700-11. PubMed ID: 24437625 [TBL] [Abstract][Full Text] [Related]
39. Products and mechanism of acene dimerization. A computational study. Zade SS; Zamoshchik N; Reddy AR; Fridman-Marueli G; Sheberla D; Bendikov M J Am Chem Soc; 2011 Jul; 133(28):10803-16. PubMed ID: 21710966 [TBL] [Abstract][Full Text] [Related]
40. Rationalizing the catalytic activity of copper in the cycloaddition of azide and alkynes (CuAAC) with the topology of ∇(2)ρ(r) and ∇∇(2)ρ(r). Calvo-Losada S; Pino-González MS; Quirante JJ J Phys Chem B; 2015 Jan; 119(4):1243-58. PubMed ID: 25489972 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]