BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30700171)

  • 1. 'Relationship between thermal dose and cell death for "rapid" ablative and "slow" hyperthermic heating'.
    Mouratidis PXE; Rivens I; Civale J; Symonds-Tayler R; Ter Haar G
    Int J Hyperthermia; 2019; 36(1):229-243. PubMed ID: 30700171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytotoxicity of hepatocellular carcinoma cells to hyperthermic and ablative temperature exposures: in vitro studies and mathematical modelling.
    Reddy G; Dreher MR; Rossmann C; Wood BJ; Haemmerich D
    Int J Hyperthermia; 2013 Jun; 29(4):318-23. PubMed ID: 23738699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arrhenius relationships from the molecule and cell to the clinic.
    Dewey WC
    Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal therapy in urologic systems: a comparison of arrhenius and thermal isoeffective dose models in predicting hyperthermic injury.
    He X; Bhowmick S; Bischof JC
    J Biomech Eng; 2009 Jul; 131(7):074507. PubMed ID: 19640143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring of thermal dose during ablation therapy using quantum dot-mediated fluorescence thermometry.
    Bensalah K; Tuncel A; Hanson W; Stern J; Han B; Cadeddu J
    J Endourol; 2010 Dec; 24(12):1903-8. PubMed ID: 20858063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of contribution of mild and moderate hyperthermia to thermal ablation and sensitization of irreversible electroporation of pancreatic cancer cells.
    Agnass P; Rodermond HM; van Veldhuisen E; Vogel JA; Ten Cate R; van Lienden KP; van Gulik TM; Franken NAP; Oei AL; Kok HP; Besselink MG; Crezee J
    J Therm Biol; 2023 Jul; 115():103619. PubMed ID: 37437370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arrhenius parameter determination as a function of heating method and cellular microenvironment based on spatial cell viability analysis.
    Whitney J; Carswell W; Rylander N
    Int J Hyperthermia; 2013 Jun; 29(4):281-95. PubMed ID: 23738696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperthermic injury to adipocyte cells by selective heating of subcutaneous fat with a novel radiofrequency device: feasibility studies.
    Franco W; Kothare A; Ronan SJ; Grekin RC; McCalmont TH
    Lasers Surg Med; 2010 Jul; 42(5):361-70. PubMed ID: 20583242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of thermal dose in moderate clinical hyperthermia with radiotherapy: a relook using temperature-time area under the curve (AUC).
    Datta NR; Marder D; Datta S; Meister A; Puric E; Stutz E; Rogers S; Eberle B; Timm O; Staruch M; Riesterer O; Bodis S
    Int J Hyperthermia; 2021; 38(1):296-307. PubMed ID: 33627018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arrhenius relationships from the molecule and cell to the clinic.
    Dewey WC
    Int J Hyperthermia; 1994; 10(4):457-83. PubMed ID: 7963805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Moderate hyperthermic heating encountered during thermal ablation increases tumor cell activity.
    Markezana A; Ahmed M; Kumar G; Zorde-Khvalevsky E; Rozenblum N; Galun E; Goldberg SN
    Int J Hyperthermia; 2020; 37(1):119-129. PubMed ID: 31969029
    [No Abstract]   [Full Text] [Related]  

  • 12. Supraphysiological thermal injury in Dunning AT-1 prostate tumor cells.
    Bhowmick S; Swanlund DJ; Bischof JC
    J Biomech Eng; 2000 Feb; 122(1):51-9. PubMed ID: 10790830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HSP90 inhibition acts synergistically with heat to induce a pro-immunogenic form of cell death in colon cancer cells.
    Mouratidis PXE; Ter Haar G
    Int J Hyperthermia; 2021; 38(1):1443-1456. PubMed ID: 34612127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mammalian cell sensitivity to hyperthermia in various cell lines: a new universal and predictive description.
    Labavić D; Ladjimi MT; Courtade E; Pfeuty B; Thommen Q
    Int J Hyperthermia; 2020; 37(1):506-516. PubMed ID: 32423261
    [No Abstract]   [Full Text] [Related]  

  • 15. Reduction of peak acoustic pressure and shaping of heated region by use of multifoci sonications in MR-guided high-intensity focused ultrasound mediated mild hyperthermia.
    Partanen A; Tillander M; Yarmolenko PS; Wood BJ; Dreher MR; Kohler MO
    Med Phys; 2013 Jan; 40(1):013301. PubMed ID: 23298120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic stent hyperthermia for esophageal cancer: an in vitro investigation in the ECA-109 cell line.
    Liu JY; Zhao LY; Wang YY; Li DY; Tao D; Li LY; Tang JT
    Oncol Rep; 2012 Mar; 27(3):791-7. PubMed ID: 22200741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is CEM43 still a relevant thermal dose parameter for hyperthermia treatment monitoring?
    van Rhoon GC
    Int J Hyperthermia; 2016; 32(1):50-62. PubMed ID: 26758036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of mathematical models of cell death and thermal damage processes.
    Pearce JA
    Int J Hyperthermia; 2013 Jun; 29(4):262-80. PubMed ID: 23738695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A feasibility study on monitoring the evolution of apparent diffusion coefficient decrease during thermal ablation.
    Plata JC; Holbrook AB; Marx M; Salgaonkar V; Jones P; Pascal-Tenorio A; Bouley D; Diederich C; Sommer G; Pauly KB
    Med Phys; 2015 Sep; 42(9):5130-7. PubMed ID: 26328964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new thermal dose model based on Vogel-Tammann-Fulcher behaviour in thermal damage processes.
    Assi HTI; Arsenault MG; Whelan WM; Kumaradas JC
    Int J Hyperthermia; 2022; 39(1):697-705. PubMed ID: 35469518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.