BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 30700248)

  • 1. Evolution of vertebrate nicotinic acetylcholine receptors.
    Pedersen JE; Bergqvist CA; Larhammar D
    BMC Evol Biol; 2019 Jan; 19(1):38. PubMed ID: 30700248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Insights Into the Evolutionary History of Melatonin Receptors in Vertebrates, With Particular Focus on Teleosts.
    Maugars G; Nourizadeh-Lillabadi R; Weltzien FA
    Front Endocrinol (Lausanne); 2020; 11():538196. PubMed ID: 33071966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications.
    Lagman D; Ocampo Daza D; Widmark J; Abalo XM; Sundström G; Larhammar D
    BMC Evol Biol; 2013 Nov; 13():238. PubMed ID: 24180662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corticotropin-releasing hormone family evolution: five ancestral genes remain in some lineages.
    Cardoso JC; Bergqvist CA; Félix RC; Larhammar D
    J Mol Endocrinol; 2016 Jul; 57(1):73-86. PubMed ID: 27220618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the Muscarinic Acetylcholine Receptors in Vertebrates.
    Pedersen JE; Bergqvist CA; Larhammar D
    eNeuro; 2018; 5(5):. PubMed ID: 30564629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of the growth hormone, prolactin, prolactin 2 and somatolactin family.
    Ocampo Daza D; Larhammar D
    Gen Comp Endocrinol; 2018 Aug; 264():94-112. PubMed ID: 29339183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein kinase C family evolution in jawed vertebrates.
    Garcia-Concejo A; Larhammar D
    Dev Biol; 2021 Nov; 479():77-90. PubMed ID: 34329618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential evolution of voltage-gated sodium channels in tetrapods and teleost fishes.
    Widmark J; Sundström G; Ocampo Daza D; Larhammar D
    Mol Biol Evol; 2011 Jan; 28(1):859-71. PubMed ID: 20924084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic evolution of transient receptor potential vanilloid (TRPV) ion channel family with numerous gene duplications and losses.
    Morini M; Bergqvist CA; Asturiano JF; Larhammar D; Dufour S
    Front Endocrinol (Lausanne); 2022; 13():1013868. PubMed ID: 36387917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications.
    Siegel N; Hoegg S; Salzburger W; Braasch I; Meyer A
    BMC Genomics; 2007 Sep; 8():312. PubMed ID: 17822543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of the gastrin-cholecystokinin gene family revealed by synteny analysis.
    Dupré D; Tostivint H
    Gen Comp Endocrinol; 2014 Jan; 195():164-73. PubMed ID: 24231682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OHNOLOGS v2: a comprehensive resource for the genes retained from whole genome duplication in vertebrates.
    Singh PP; Isambert H
    Nucleic Acids Res; 2020 Jan; 48(D1):D724-D730. PubMed ID: 31612943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions.
    Larsson TA; Olsson F; Sundstrom G; Lundin LG; Brenner S; Venkatesh B; Larhammar D
    BMC Evol Biol; 2008 Jun; 8():184. PubMed ID: 18578868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family.
    Gillis WQ; St John J; Bowerman B; Schneider SQ
    BMC Evol Biol; 2009 Aug; 9():207. PubMed ID: 19695090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetrapod V1R-like ora genes in an early-diverging ray-finned fish species: the canonical six ora gene repertoire of teleost fish resulted from gene loss in a larger ancestral repertoire.
    Zapilko V; Korsching SI
    BMC Genomics; 2016 Jan; 17():83. PubMed ID: 26818853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expansion of transducin subunit gene families in early vertebrate tetraploidizations.
    Lagman D; Sundström G; Ocampo Daza D; Abalo XM; Larhammar D
    Genomics; 2012 Oct; 100(4):203-11. PubMed ID: 22814267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights into the evolution of vertebrate CRH (corticotropin-releasing hormone) and invertebrate DH44 (diuretic hormone 44) receptors in metazoans.
    Cardoso JC; Félix RC; Bergqvist CA; Larhammar D
    Gen Comp Endocrinol; 2014 Dec; 209():162-70. PubMed ID: 25230393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates.
    Sundström G; Dreborg S; Larhammar D
    PLoS One; 2010 May; 5(5):e10512. PubMed ID: 20463905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uneven evolutionary rates of bradykinin B1 and B2 receptors in vertebrate lineages.
    Bromée T; Venkatesh B; Brenner S; Postlethwait JH; Yan YL; Larhammar D
    Gene; 2006 May; 373():100-8. PubMed ID: 16530355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ancestral vertebrate complexity of the opioid system.
    Larhammar D; Bergqvist C; Sundström G
    Vitam Horm; 2015; 97():95-122. PubMed ID: 25677769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.