BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 30700578)

  • 1. Expanded CUG repeats in
    van Cruchten RTP; Wieringa B; Wansink DG
    RNA; 2019 Apr; 25(4):481-495. PubMed ID: 30700578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy.
    Wojtkowiak-Szlachcic A; Taylor K; Stepniak-Konieczna E; Sznajder LJ; Mykowska A; Sroka J; Thornton CA; Sobczak K
    Nucleic Acids Res; 2015 Mar; 43(6):3318-31. PubMed ID: 25753670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systemic Evaluation of Chimeric LNA/2'-O-Methyl Steric Blockers for Myotonic Dystrophy Type 1 Therapy.
    Christou M; Wengel J; Sokratous K; Kyriacou K; Nikolaou G; Phylactou LA; Mastroyiannopoulos NP
    Nucleic Acid Ther; 2020 Apr; 30(2):80-93. PubMed ID: 31873063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systemic therapy in an RNA toxicity mouse model with an antisense oligonucleotide therapy targeting a non-CUG sequence within the DMPK 3'UTR RNA.
    Yadava RS; Yu Q; Mandal M; Rigo F; Bennett CF; Mahadevan MS
    Hum Mol Genet; 2020 Jun; 29(9):1440-1453. PubMed ID: 32242217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systemic delivery of a Peptide-linked morpholino oligonucleotide neutralizes mutant RNA toxicity in a mouse model of myotonic dystrophy.
    Leger AJ; Mosquea LM; Clayton NP; Wu IH; Weeden T; Nelson CA; Phillips L; Roberts E; Piepenhagen PA; Cheng SH; Wentworth BM
    Nucleic Acid Ther; 2013 Apr; 23(2):109-17. PubMed ID: 23308382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vitro Synthesis and RNA Structure Probing of CUG Triplet Repeat RNA.
    van Cruchten RTP; Wansink DG
    Methods Mol Biol; 2020; 2056():187-202. PubMed ID: 31586349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AON-induced splice-switching and DMPK pre-mRNA degradation as potential therapeutic approaches for Myotonic Dystrophy type 1.
    Stepniak-Konieczna E; Konieczny P; Cywoniuk P; Dluzewska J; Sobczak K
    Nucleic Acids Res; 2020 Mar; 48(5):2531-2543. PubMed ID: 31965181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of MBNL1-mediated retrograde BDNF signaling in the myotonic dystrophy brain.
    Wang PY; Kuo TY; Wang LH; Liang WH; Wang GS
    Acta Neuropathol Commun; 2023 Mar; 11(1):44. PubMed ID: 36922901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Methods to Monitor RNA Biomarkers in Myotonic Dystrophy.
    Wojciechowska M; Sobczak K; Kozlowski P; Sedehizadeh S; Wojtkowiak-Szlachcic A; Czubak K; Markus R; Lusakowska A; Kaminska A; Brook JD
    Sci Rep; 2018 Apr; 8(1):5885. PubMed ID: 29651162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sense and Antisense DMPK RNA Foci Accumulate in DM1 Tissues during Development.
    Michel L; Huguet-Lachon A; Gourdon G
    PLoS One; 2015; 10(9):e0137620. PubMed ID: 26339785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HnRNP H inhibits nuclear export of mRNA containing expanded CUG repeats and a distal branch point sequence.
    Kim DH; Langlois MA; Lee KB; Riggs AD; Puymirat J; Rossi JJ
    Nucleic Acids Res; 2005; 33(12):3866-74. PubMed ID: 16027111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental insights into the pathology of and therapeutic strategies for DM1: Back to the basics.
    Chau A; Kalsotra A
    Dev Dyn; 2015 Mar; 244(3):377-90. PubMed ID: 25504326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trinucleotide-repeat expanded and normal DMPK transcripts contain unusually long poly(A) tails despite differential nuclear residence.
    Gudde AEEG; van Kessel IDG; André LM; Wieringa B; Wansink DG
    Biochim Biophys Acta Gene Regul Mech; 2017 Jun; 1860(6):740-749. PubMed ID: 28435090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DDX6 regulates sequestered nuclear CUG-expanded DMPK-mRNA in dystrophia myotonica type 1.
    Pettersson OJ; Aagaard L; Andrejeva D; Thomsen R; Jensen TG; Damgaard CK
    Nucleic Acids Res; 2014 Jun; 42(11):7186-200. PubMed ID: 24792155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structural basis of myotonic dystrophy from the crystal structure of CUG repeats.
    Mooers BH; Logue JS; Berglund JA
    Proc Natl Acad Sci U S A; 2005 Nov; 102(46):16626-31. PubMed ID: 16269545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico discovery of substituted pyrido[2,3-d]pyrimidines and pentamidine-like compounds with biological activity in myotonic dystrophy models.
    González ÀL; Konieczny P; Llamusi B; Delgado-Pinar E; Borrell JI; Teixidó J; García-España E; Pérez-Alonso M; Estrada-Tejedor R; Artero R
    PLoS One; 2017; 12(6):e0178931. PubMed ID: 28582438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fuchs' Endothelial Corneal Dystrophy and RNA Foci in Patients With Myotonic Dystrophy.
    Mootha VV; Hansen B; Rong Z; Mammen PP; Zhou Z; Xing C; Gong X
    Invest Ophthalmol Vis Sci; 2017 Sep; 58(11):4579-4585. PubMed ID: 28886202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat.
    Mankodi A; Logigian E; Callahan L; McClain C; White R; Henderson D; Krym M; Thornton CA
    Science; 2000 Sep; 289(5485):1769-73. PubMed ID: 10976074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (CTG)n repeat-mediated dysregulation of MBNL1 and MBNL2 expression during myogenesis in DM1 occurs already at the myoblast stage.
    André LM; van Cruchten RTP; Willemse M; Wansink DG
    PLoS One; 2019; 14(5):e0217317. PubMed ID: 31116797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antisense transcription of the myotonic dystrophy locus yields low-abundant RNAs with and without (CAG)n repeat.
    Gudde AEEG; van Heeringen SJ; de Oude AI; van Kessel IDG; Estabrook J; Wang ET; Wieringa B; Wansink DG
    RNA Biol; 2017 Oct; 14(10):1374-1388. PubMed ID: 28102759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.