BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 30700697)

  • 1. Cell death pathways in pathogenic trypanosomatids: lessons of (over)kill.
    Menna-Barreto RFS
    Cell Death Dis; 2019 Jan; 10(2):93. PubMed ID: 30700697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi.
    Parsons M; Worthey EA; Ward PN; Mottram JC
    BMC Genomics; 2005 Sep; 6():127. PubMed ID: 16164760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ultimate fate determinants of drug induced cell-death mechanisms in Trypanosomatids.
    Das P; Saha S; BoseDasgupta S
    Int J Parasitol Drugs Drug Resist; 2021 Apr; 15():81-91. PubMed ID: 33601284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Naphthoquinones and Derivatives for Chemotherapy: Perspectives and Limitations of their Anti-trypanosomatids Activities.
    Dantas-Pereira L; Cunha-Junior EF; Andrade-Neto VV; Bower JF; Jardim GAM; da Silva Júnior EN; Torres-Santos EC; Menna-Barreto RFS
    Curr Pharm Des; 2021; 27(15):1807-1824. PubMed ID: 33167829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The double-edged sword in pathogenic trypanosomatids: the pivotal role of mitochondria in oxidative stress and bioenergetics.
    Menna-Barreto RF; de Castro SL
    Biomed Res Int; 2014; 2014():614014. PubMed ID: 24800243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting calcium homeostasis as the therapy of Chagas' disease and leishmaniasis - a review.
    Benaim B; Garcia CR
    Trop Biomed; 2011 Dec; 28(3):471-81. PubMed ID: 22433874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unveiling the intracellular survival gene kit of trypanosomatid parasites.
    Bartholomeu DC; de Paiva RM; Mendes TA; DaRocha WD; Teixeira SM
    PLoS Pathog; 2014 Dec; 10(12):e1004399. PubMed ID: 25474314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins.
    Soares Medeiros LC; South L; Peng D; Bustamante JM; Wang W; Bunkofske M; Perumal N; Sanchez-Valdez F; Tarleton RL
    mBio; 2017 Nov; 8(6):. PubMed ID: 29114029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal Transduction Pathways as Therapeutic Target for Chagas Disease.
    Schoijet AC; Sternlieb T; Alonso GD
    Curr Med Chem; 2019; 26(36):6572-6589. PubMed ID: 31218950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient Superdiffusion and Long-Range Correlations in the Motility Patterns of Trypanosomatid Flagellate Protozoa.
    Alves LG; Scariot DB; Guimarães RR; Nakamura CV; Mendes RS; Ribeiro HV
    PLoS One; 2016; 11(3):e0152092. PubMed ID: 27007779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The superfamily keeps growing: Identification in trypanosomatids of RibJ, the first riboflavin transporter family in protists.
    Balcazar DE; Vanrell MC; Romano PS; Pereira CA; Goldbaum FA; Bonomi HR; Carrillo C
    PLoS Negl Trop Dis; 2017 Apr; 11(4):e0005513. PubMed ID: 28406895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Searching the Tritryp genomes for drug targets.
    Myler PJ
    Adv Exp Med Biol; 2008; 625():133-40. PubMed ID: 18365664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Novel Chemical Scaffolds Inhibiting Trypanothione Synthetase from Pathogenic Trypanosomatids.
    Benítez D; Medeiros A; Fiestas L; Panozzo-Zenere EA; Maiwald F; Prousis KC; Roussaki M; Calogeropoulou T; Detsi A; Jaeger T; Šarlauskas J; Peterlin Mašič L; Kunick C; Labadie GR; Flohé L; Comini MA
    PLoS Negl Trop Dis; 2016 Apr; 10(4):e0004617. PubMed ID: 27070550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Analysis of Virulence Mechanisms of Trypanosomatids Pathogenic to Humans.
    de Castro Neto AL; da Silveira JF; Mortara RA
    Front Cell Infect Microbiol; 2021; 11():669079. PubMed ID: 33937106
    [No Abstract]   [Full Text] [Related]  

  • 15. The use of Sulfonamide Derivatives in the Treatment of Trypanosomatid Parasites including Trypanosoma cruzi, Trypanosoma brucei, and Leishmania ssp.
    Scarim CB; Chelucci RC; Dos Santos JL; Chin CM
    Med Chem; 2020; 16(1):24-38. PubMed ID: 31218962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmed cell death in trypanosomatids: is it an altruistic mechanism for survival of the fittest?
    Debrabant A; Nakhasi H
    Kinetoplastid Biol Dis; 2003 Jun; 2(1):7. PubMed ID: 12848897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is the mitochondrion a promising drug target in trypanosomatids?
    Pedra-Rezende Y; Bombaça ACS; Menna-Barreto RFS
    Mem Inst Oswaldo Cruz; 2022; 117():e210379. PubMed ID: 35195164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges in drug discovery targeting TriTryp diseases with an emphasis on leishmaniasis.
    Alcântara LM; Ferreira TCS; Gadelha FR; Miguel DC
    Int J Parasitol Drugs Drug Resist; 2018 Dec; 8(3):430-439. PubMed ID: 30293058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical Cartography Approaches to Study Trypanosomatid Infection.
    Dean DA; Haffner JJ; Katemauswa M; McCall LI
    J Vis Exp; 2022 Jan; (179):. PubMed ID: 35129167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The TryPIKinome of five human pathogenic trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, Leishmania major, Leishmania braziliensis and Leishmania infantum--new tools for designing specific inhibitors.
    Bahia D; Oliveira LM; Lima FM; Oliveira P; Silveira JF; Mortara RA; Ruiz JC
    Biochem Biophys Res Commun; 2009 Dec; 390(3):963-70. PubMed ID: 19852933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.