These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30700767)

  • 21. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes.
    Leiserson MD; Vandin F; Wu HT; Dobson JR; Eldridge JV; Thomas JL; Papoutsaki A; Kim Y; Niu B; McLellan M; Lawrence MS; Gonzalez-Perez A; Tamborero D; Cheng Y; Ryslik GA; Lopez-Bigas N; Getz G; Ding L; Raphael BJ
    Nat Genet; 2015 Feb; 47(2):106-14. PubMed ID: 25501392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Approaches for the identification of driver mutations in cancer: A tutorial from a computational perspective.
    Cutigi JF; Evangelista AF; Simao A
    J Bioinform Comput Biol; 2020 Jun; 18(3):2050016. PubMed ID: 32698724
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inferring tumor progression in large datasets.
    Mohaghegh Neyshabouri M; Jun SH; Lagergren J
    PLoS Comput Biol; 2020 Oct; 16(10):e1008183. PubMed ID: 33035204
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Higher order genetic interactions switch cancer genes from two-hit to one-hit drivers.
    Park S; Supek F; Lehner B
    Nat Commun; 2021 Dec; 12(1):7051. PubMed ID: 34862370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of algorithms for the detection of cancer drivers at subgene resolution.
    Porta-Pardo E; Kamburov A; Tamborero D; Pons T; Grases D; Valencia A; Lopez-Bigas N; Getz G; Godzik A
    Nat Methods; 2017 Aug; 14(8):782-788. PubMed ID: 28714987
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heritable one-hit events defining cancer prevention?
    Kopelovich L; Shea-Herbert B
    Cell Cycle; 2013 Aug; 12(16):2553-7. PubMed ID: 23907126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In silico learning of tumor evolution through mutational time series.
    Auslander N; Wolf YI; Koonin EV
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9501-9510. PubMed ID: 31015295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A probabilistic method for leveraging functional annotations to enhance estimation of the temporal order of pathway mutations during carcinogenesis.
    Wang M; Yu T; Liu J; Chen L; Stromberg AJ; Villano JL; Arnold SM; Liu C; Wang C
    BMC Bioinformatics; 2019 Dec; 20(1):620. PubMed ID: 31791231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovering potential cancer driver genes by an integrated network-based approach.
    Shi K; Gao L; Wang B
    Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of new driver and passenger mutations within APOBEC-induced hotspot mutations in bladder cancer.
    Shi MJ; Meng XY; Fontugne J; Chen CL; Radvanyi F; Bernard-Pierrot I
    Genome Med; 2020 Sep; 12(1):85. PubMed ID: 32988402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finding co-mutated genes and candidate cancer genes in cancer genomes by stratified false discovery rate control.
    Wang J; Zhang Y; Shen X; Zhu J; Zhang L; Zou J; Guo Z
    Mol Biosyst; 2011 Apr; 7(4):1158-66. PubMed ID: 21279201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A spatial simulation approach to account for protein structure when identifying non-random somatic mutations.
    Ryslik GA; Cheng Y; Cheung KH; Bjornson RD; Zelterman D; Modis Y; Zhao H
    BMC Bioinformatics; 2014 Jul; 15():231. PubMed ID: 24990767
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rationale and Roadmap for Developing Panels of Hotspot Cancer Driver Gene Mutations as Biomarkers of Cancer Risk.
    Harris KL; Myers MB; McKim KL; Elespuru RK; Parsons BL
    Environ Mol Mutagen; 2020 Jan; 61(1):152-175. PubMed ID: 31469467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cancer-mutation network and the number and specificity of driver mutations.
    Iranzo J; Martincorena I; Koonin EV
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):E6010-E6019. PubMed ID: 29895694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CanDrA: cancer-specific driver missense mutation annotation with optimized features.
    Mao Y; Chen H; Liang H; Meric-Bernstam F; Mills GB; Chen K
    PLoS One; 2013; 8(10):e77945. PubMed ID: 24205039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comprehensive assessment of computational algorithms in predicting cancer driver mutations.
    Chen H; Li J; Wang Y; Ng PK; Tsang YH; Shaw KR; Mills GB; Liang H
    Genome Biol; 2020 Feb; 21(1):43. PubMed ID: 32079540
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identifying Epistasis in Cancer Genomes: A Delicate Affair.
    van de Haar J; Canisius S; Yu MK; Voest EE; Wessels LFA; Ideker T
    Cell; 2019 May; 177(6):1375-1383. PubMed ID: 31150618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DrGaP: a powerful tool for identifying driver genes and pathways in cancer sequencing studies.
    Hua X; Xu H; Yang Y; Zhu J; Liu P; Lu Y
    Am J Hum Genet; 2013 Sep; 93(3):439-51. PubMed ID: 23954162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Evolutionary Approach for Identifying Driver Mutations in Colorectal Cancer.
    Foo J; Liu LL; Leder K; Riester M; Iwasa Y; Lengauer C; Michor F
    PLoS Comput Biol; 2015 Sep; 11(9):e1004350. PubMed ID: 26379039
    [TBL] [Abstract][Full Text] [Related]  

  • 40. IDENTIFY CANCER DRIVER GENES THROUGH SHARED MENDELIAN DISEASE PATHOGENIC VARIANTS AND CANCER SOMATIC MUTATIONS.
    Ma M; Wang C; Glicksberg BS; Schadt EE; Li SD; Chen R
    Pac Symp Biocomput; 2017; 22():473-484. PubMed ID: 27896999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.