These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30700779)

  • 1. Cloud-fracture networks as a means of accessing superhot geothermal energy.
    Watanabe N; Sakaguchi K; Goto R; Miura T; Yamane K; Ishibashi T; Chen Y; Komai T; Tsuchiya N
    Sci Rep; 2019 Jan; 9(1):939. PubMed ID: 30700779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of amorphous silica nanoparticles and its impact on permeability of fractured granite in superhot geothermal environments.
    Watanabe N; Abe H; Okamoto A; Nakamura K; Komai T
    Sci Rep; 2021 Mar; 11(1):5340. PubMed ID: 33674693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovering geothermal supercritical fluids: a new frontier for seismic exploration.
    Piana Agostinetti N; Licciardi A; Piccinini D; Mazzarini F; Musumeci G; Saccorotti G; Chiarabba C
    Sci Rep; 2017 Nov; 7(1):14592. PubMed ID: 29109436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydraulic Fracturing Experiment Investigation for the Application of Geothermal Energy Extraction.
    Cheng Y; Zhang Y
    ACS Omega; 2020 Apr; 5(15):8667-8686. PubMed ID: 32337430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryogenic fracturing using liquid nitrogen on granite at elevated temperatures: a case study for enhanced geothermal systems in Kazakhstan.
    Longinos SN; Hazlett R
    Sci Rep; 2024 Jan; 14(1):160. PubMed ID: 38168137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study on the breakdown mechanism of high temperature granite induced by liquid nitrogen fracturing: An implication to geothermal reservoirs.
    Cai C; Zou Z; Ren K; Tao Z; Feng Y; Yang Y; Wang B
    Heliyon; 2023 Aug; 9(8):e19257. PubMed ID: 37664710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxation damage control via fatigue-hydraulic fracturing in granitic rock as inferred from laboratory-, mine-, and field-scale experiments.
    Zang A; Zimmermann G; Hofmann H; Niemz P; Kim KY; Diaz M; Zhuang L; Yoon JS
    Sci Rep; 2021 Mar; 11(1):6780. PubMed ID: 33762643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The injection-production performance of an enhanced geothermal system considering fracture network complexity and thermo-hydro-mechanical coupling in numerical simulations.
    Lei Z; Zhang Y; Cui Q; Shi Y
    Sci Rep; 2023 Sep; 13(1):14558. PubMed ID: 37666927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A laboratory study of hydraulic fracturing at the brittle-ductile transition.
    Parisio F; Yoshioka K; Sakaguchi K; Goto R; Miura T; Pramudyo E; Ishibashi T; Watanabe N
    Sci Rep; 2021 Nov; 11(1):22300. PubMed ID: 34785676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porosity evolution at the brittle-ductile transition in the continental crust: Implications for deep hydro-geothermal circulation.
    Violay M; Heap MJ; Acosta M; Madonna C
    Sci Rep; 2017 Aug; 7(1):7705. PubMed ID: 28794474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the dynamic characteristics of rock surrounding a wellbore in energy storage areas during deep geothermal energy mining.
    Wang C; Wang HB; Xie MZ; Xiong ZQ; Wang C; Cheng LP; Zhan SF
    PLoS One; 2020; 15(8):e0237823. PubMed ID: 32822423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental analysis of multiple factors on hydraulic fracturing in coalbed methane reservoirs.
    Zhang F; Ma G; Liu X; Tao Y; Feng D; Li R
    PLoS One; 2018; 13(4):e0195363. PubMed ID: 29621295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Study of Permeability Changes Due to Cold Fluid Circulation in Fractured Geothermal Reservoirs.
    Gholizadeh Doonechaly N; Abdel Azim RR; Rahman SS
    Ground Water; 2016 May; 54(3):325-35. PubMed ID: 26340088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical investigation of the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir: a case study of the Daming geothermal field in China.
    Guo X; Song H; Killough J; Du L; Sun P
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4690-4706. PubMed ID: 29197059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of arsenic enrichment in geothermal and petroleum reservoirs fluids in Mexico.
    Birkle P; Bundschuh J; Sracek O
    Water Res; 2010 Nov; 44(19):5605-17. PubMed ID: 20691459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new mathematical modeling approach for thermal exploration efficiency under different geothermal well layout conditions.
    Gao J; Shi Q
    Sci Rep; 2021 Nov; 11(1):22930. PubMed ID: 34824333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of enhanced geothermal system in the Basal Cambrian Sandstone Unit, Alberta, Canada.
    Shi G; Wang J; Gates ID
    Heliyon; 2024 Jan; 10(2):e24763. PubMed ID: 38312650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking supercritical geothermal fluid distribution from continuous seismic monitoring.
    Andajani RD; Tsuji T; Ikeda T; Matsumoto S; Kitamura K; Nishijima J
    Sci Rep; 2023 May; 13(1):8370. PubMed ID: 37225744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An innovative experimental equipment for liquid nitrogen fracturing.
    Huang P; Huang Z; Yang Z; Wu X; Li R; Zhang S
    Rev Sci Instrum; 2019 Mar; 90(3):036104. PubMed ID: 30927798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of fractured continuum model to enhanced geothermal system heat extraction problems.
    Kalinina EA; Klise KA; McKenna SA; Hadgu T; Lowry TS
    Springerplus; 2014; 3():110. PubMed ID: 24600552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.