These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30700797)

  • 1.
    Yoshida H; Asahara Y; Yamamoto K; Katsuta N; Minami M; Metcalfe R
    Sci Rep; 2019 Jan; 9(1):1003. PubMed ID: 30700797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early post-mortem formation of carbonate concretions around tusk-shells over week-month timescales.
    Yoshida H; Ujihara A; Minami M; Asahara Y; Katsuta N; Yamamoto K; Sirono SI; Maruyama I; Nishimoto S; Metcalfe R
    Sci Rep; 2015 Sep; 5():14123. PubMed ID: 26369805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized conditions of spherical carbonate concretion formation around decaying organic matter in early diagenesis.
    Yoshida H; Yamamoto K; Minami M; Katsuta N; Sin-Ichi S; Metcalfe R
    Sci Rep; 2018 Apr; 8(1):6308. PubMed ID: 29679012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new model of the formation of Pennsylvanian iron carbonate concretions hosting exceptional soft-bodied fossils in Mazon Creek, Illinois.
    Cotroneo S; Schiffbauer JD; McCoy VE; Wortmann UG; Darroch SA; Peng Y; Laflamme M
    Geobiology; 2016 Nov; 14(6):543-555. PubMed ID: 27422851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probable calcified metaphytes in the latest Proterozoic Nama Group, Namibia: origin, diagenesis, and implications.
    Grant SW; Knoll AH; Germs GJ
    J Paleontol; 1991; 65(1):1-18. PubMed ID: 11538648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stratigraphy and tephra of the Kibish Formation, southwestern Ethiopia.
    Brown FH; Fuller CR
    J Hum Evol; 2008 Sep; 55(3):366-403. PubMed ID: 18692219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of large carbonate concretions in black cherts in the Gufeng Formation (Guadalupian) at Enshi, South China.
    Wei H; Tang Z; Qiu Z; Yan D; Bai M
    Geobiology; 2020 Jan; 18(1):14-30. PubMed ID: 31496070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preservation of overmature, ancient, sedimentary organic matter in carbonate concretions during outcrop weathering.
    Loyd SJ
    Geobiology; 2017 Jan; 15(1):146-157. PubMed ID: 27384615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated approaches to terminal Proterozoic stratigraphy: an example from the Olenek Uplift, northeastern Siberia.
    Knoll AH; Grotzinger JP; Kaufman AJ; Kolosov P
    Precambrian Res; 1995; 73():251-70. PubMed ID: 11539551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The evolution of the marine carbonate factory.
    Wang J; Tarhan LG; Jacobson AD; Oehlert AM; Planavsky NJ
    Nature; 2023 Mar; 615(7951):265-269. PubMed ID: 36813968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable carbon and oxygen isotopic determination of sub-microgram quantities of CaCO3 to analyze individual foraminiferal shells.
    Ishimura T; Tsunogai U; Gamo T
    Rapid Commun Mass Spectrom; 2004; 18(23):2883-8. PubMed ID: 15517527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paleoceanography. Inconstant ancient seas and life's path.
    Kerr RA
    Science; 2002 Nov; 298(5596):1165-6. PubMed ID: 12424353
    [No Abstract]   [Full Text] [Related]  

  • 13. Sr isotopic variations in Upper Proterozoic carbonates from Svalbard and East Greenland.
    Derry LA; Keto LS; Jacobsen SB; Knoll AH; Swett K
    Geochim Cosmochim Acta; 1989; 53():2331-9. PubMed ID: 11539779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogenic apatite in carbonate concretions with and without fossils investigated in situ by micro-Raman spectroscopy.
    Kitanaka R; Tsuboi M; Ozaki Y
    Sci Rep; 2023 Jun; 13(1):9714. PubMed ID: 37322242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and
    Polgári M; Bérczi S; Horiuchi K; Matsuzaki H; Kovács T; Józsa S; Bendő Z; Fintor K; Fekete J; Homonnay Z; Kuzmann E; Gucsik A; Gyollai I; Kovács J; Dódony I
    J Environ Radioact; 2017 Jul; 173():58-69. PubMed ID: 28011110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strontium isotopes reveal weathering processes in lateritic covers in southern China with implications for paleogeographic reconstructions.
    Wei X; Wang S; Ji H; Shi Z
    PLoS One; 2018; 13(1):e0191780. PubMed ID: 29373592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfur and strontium isotope geochemistry of tributary rivers of Lake Biwa: implications for human impact on the decadal change of lake water quality.
    Nakano T; Tayasu I; Wada E; Igeta A; Hyodo F; Miura Y
    Sci Total Environ; 2005 Jun; 345(1-3):1-12. PubMed ID: 15919522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemostratigraphy of predominantly siliciclastic Neoproterozoic successions: a case study of the Pocatello Formation and Lower Brigham Group, Idaho, USA.
    Smith LH; Kaufman AJ; Knoll AH; Link PK
    Geol Mag; 1994 May; 131(3):301-14. PubMed ID: 11543293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compilation and review of 87Sr/86Sr and stable isotopes from groundwater, calcite fracture fillings, mineral, and whole-rock sampling at Äspö, Sweden.
    Wallin B; Peterman Z
    Ground Water; 2015 Apr; 53 Suppl 1():103-12. PubMed ID: 24571642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accretion rates of meteorites and cosmic dust in the Early Ordovician.
    Schmitz B; Peucker-Ehrenbrink B; Lindstrom M; Tassinari M
    Science; 1997 Oct; 278(5335):88-90. PubMed ID: 11536823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.