These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30700868)

  • 1. Tripled yield in direct-drive laser fusion through statistical modelling.
    Gopalaswamy V; Betti R; Knauer JP; Luciani N; Patel D; Woo KM; Bose A; Igumenshchev IV; Campbell EM; Anderson KS; Bauer KA; Bonino MJ; Cao D; Christopherson AR; Collins GW; Collins TJB; Davies JR; Delettrez JA; Edgell DH; Epstein R; Forrest CJ; Froula DH; Glebov VY; Goncharov VN; Harding DR; Hu SX; Jacobs-Perkins DW; Janezic RT; Kelly JH; Mannion OM; Maximov A; Marshall FJ; Michel DT; Miller S; Morse SFB; Palastro J; Peebles J; Radha PB; Regan SP; Sampat S; Sangster TC; Sefkow AB; Seka W; Shah RC; Shmyada WT; Shvydky A; Stoeckl C; Solodov AA; Theobald W; Zuegel JD; Johnson MG; Petrasso RD; Li CK; Frenje JA
    Nature; 2019 Jan; 565(7741):581-586. PubMed ID: 30700868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First Measurements of Deuterium-Tritium and Deuterium-Deuterium Fusion Reaction Yields in Ignition-Scalable Direct-Drive Implosions.
    Forrest CJ; Radha PB; Knauer JP; Glebov VY; Goncharov VN; Regan SP; Rosenberg MJ; Sangster TC; Shmayda WT; Stoeckl C; Gatu Johnson M
    Phys Rev Lett; 2017 Mar; 118(9):095002. PubMed ID: 28306316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA.
    Regan SP; Goncharov VN; Igumenshchev IV; Sangster TC; Betti R; Bose A; Boehly TR; Bonino MJ; Campbell EM; Cao D; Collins TJ; Craxton RS; Davis AK; Delettrez JA; Edgell DH; Epstein R; Forrest CJ; Frenje JA; Froula DH; Gatu Johnson M; Glebov VY; Harding DR; Hohenberger M; Hu SX; Jacobs-Perkins D; Janezic R; Karasik M; Keck RL; Kelly JH; Kessler TJ; Knauer JP; Kosc TZ; Loucks SJ; Marozas JA; Marshall FJ; McCrory RL; McKenty PW; Meyerhofer DD; Michel DT; Myatt JF; Obenschain SP; Petrasso RD; Radha PB; Rice B; Rosenberg MJ; Schmitt AJ; Schmitt MJ; Seka W; Shmayda WT; Shoup MJ; Shvydky A; Skupsky S; Solodov AA; Stoeckl C; Theobald W; Ulreich J; Wittman MD; Woo KM; Yaakobi B; Zuegel JD
    Phys Rev Lett; 2016 Jul; 117(2):025001. PubMed ID: 27447511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shock-Augmented Ignition Approach to Laser Inertial Fusion.
    Scott RHH; Barlow D; Trickey W; Ruocco A; Glize K; Antonelli L; Khan M; Woolsey NC
    Phys Rev Lett; 2022 Nov; 129(19):195001. PubMed ID: 36399760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermonuclear ignition and the onset of propagating burn in inertial fusion implosions.
    Christopherson AR; Betti R; Lindl JD
    Phys Rev E; 2019 Feb; 99(2-1):021201. PubMed ID: 30934301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct-drive laser fusion: status, plans and future.
    Campbell EM; Sangster TC; Goncharov VN; Zuegel JD; Morse SFB; Sorce C; Collins GW; Wei MS; Betti R; Regan SP; Froula DH; Dorrer C; Harding DR; Gopalaswamy V; Knauer JP; Shah R; Mannion OM; Marozas JA; Radha PB; Rosenberg MJ; Collins TJB; Christopherson AR; Solodov AA; Cao D; Palastro JP; Follett RK; Farrell M
    Philos Trans A Math Phys Eng Sci; 2021 Jan; 379(2189):20200011. PubMed ID: 33280561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimentally Inferred Fusion Yield Dependencies of OMEGA Inertial Confinement Fusion Implosions.
    Lees A; Betti R; Knauer JP; Gopalaswamy V; Patel D; Woo KM; Anderson KS; Campbell EM; Cao D; Carroll-Nellenback J; Epstein R; Forrest C; Goncharov VN; Harding DR; Hu SX; Igumenshchev IV; Janezic RT; Mannion OM; Radha PB; Regan SP; Shvydky A; Shah RC; Shmayda WT; Stoeckl C; Theobald W; Thomas C
    Phys Rev Lett; 2021 Sep; 127(10):105001. PubMed ID: 34533333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symmetric inertial confinement fusion implosions at ultra-high laser energies.
    Glenzer SH; MacGowan BJ; Michel P; Meezan NB; Suter LJ; Dixit SN; Kline JL; Kyrala GA; Bradley DK; Callahan DA; Dewald EL; Divol L; Dzenitis E; Edwards MJ; Hamza AV; Haynam CA; Hinkel DE; Kalantar DH; Kilkenny JD; Landen OL; Lindl JD; LePape S; Moody JD; Nikroo A; Parham T; Schneider MB; Town RP; Wegner P; Widmann K; Whitman P; Young BK; Van Wonterghem B; Atherton LJ; Moses EI
    Science; 2010 Mar; 327(5970):1228-31. PubMed ID: 20110465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core conditions for alpha heating attained in direct-drive inertial confinement fusion.
    Bose A; Woo KM; Betti R; Campbell EM; Mangino D; Christopherson AR; McCrory RL; Nora R; Regan SP; Goncharov VN; Sangster TC; Forrest CJ; Frenje J; Gatu Johnson M; Glebov VY; Knauer JP; Marshall FJ; Stoeckl C; Theobald W
    Phys Rev E; 2016 Jul; 94(1-1):011201. PubMed ID: 27575069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shock ignition: a new approach to high gain inertial confinement fusion on the national ignition facility.
    Perkins LJ; Betti R; LaFortune KN; Williams WH
    Phys Rev Lett; 2009 Jul; 103(4):045004. PubMed ID: 19659364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing "inverted-corona" fusion targets as high-fluence neutron sources.
    Hohenberger M; Meezan NB; Riedel WM; Kabadi N; Forrest CJ; Aghaian L; Cappelli MA; Farrell M; Glenzer SH; Heeter B; Heredia R; Landen OL; Mackinnon AJ; Petrasso R; Shuldberg CM; Treffert F; Hsing WW
    Rev Sci Instrum; 2021 Mar; 92(3):033544. PubMed ID: 33819995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.
    Betti R; Christopherson AR; Spears BK; Nora R; Bose A; Howard J; Woo KM; Edwards MJ; Sanz J
    Phys Rev Lett; 2015 Jun; 114(25):255003. PubMed ID: 26197131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for stratification of deuterium-tritium fuel in inertial confinement fusion implosions.
    Casey DT; Frenje JA; Johnson MG; Manuel MJ; Rinderknecht HG; Sinenian N; Séguin FH; Li CK; Petrasso RD; Radha PB; Delettrez JA; Glebov VY; Meyerhofer DD; Sangster TC; McNabb DP; Amendt PA; Boyd RN; Rygg JR; Herrmann HW; Kim YH; Bacher AD
    Phys Rev Lett; 2012 Feb; 108(7):075002. PubMed ID: 22401216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility.
    Döppner T; Callahan DA; Hurricane OA; Hinkel DE; Ma T; Park HS; Berzak Hopkins LF; Casey DT; Celliers P; Dewald EL; Dittrich TR; Haan SW; Kritcher AL; MacPhee A; Le Pape S; Pak A; Patel PK; Springer PT; Salmonson JD; Tommasini R; Benedetti LR; Bond E; Bradley DK; Caggiano J; Church J; Dixit S; Edgell D; Edwards MJ; Fittinghoff DN; Frenje J; Gatu Johnson M; Grim G; Hatarik R; Havre M; Herrmann H; Izumi N; Khan SF; Kline JL; Knauer J; Kyrala GA; Landen OL; Merrill FE; Moody J; Moore AS; Nikroo A; Ralph JE; Remington BA; Robey HF; Sayre D; Schneider M; Streckert H; Town R; Turnbull D; Volegov PL; Wan A; Widmann K; Wilde CH; Yeamans C
    Phys Rev Lett; 2015 Jul; 115(5):055001. PubMed ID: 26274424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility.
    Park HS; Hurricane OA; Callahan DA; Casey DT; Dewald EL; Dittrich TR; Döppner T; Hinkel DE; Berzak Hopkins LF; Le Pape S; Ma T; Patel PK; Remington BA; Robey HF; Salmonson JD; Kline JL
    Phys Rev Lett; 2014 Feb; 112(5):055001. PubMed ID: 24580603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of electron-ion temperature equilibration on inertial confinement fusion implosions.
    Xu B; Hu SX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016408. PubMed ID: 21867323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot-electron preheat and mitigation in polar-direct-drive experiments at the National Ignition Facility.
    Solodov AA; Rosenberg MJ; Stoeckl M; Christopherson AR; Betti R; Radha PB; Stoeckl C; Hohenberger M; Bachmann B; Epstein R; Follett RK; Seka W; Myatt JF; Michel P; Regan SP; Palastro JP; Froula DH; Campbell EM; Goncharov VN
    Phys Rev E; 2022 Nov; 106(5-2):055204. PubMed ID: 36559374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-density carbon capsule experiments on the national ignition facility.
    Ross JS; Ho D; Milovich J; Döppner T; McNaney J; MacPhee AG; Hamza A; Biener J; Robey HF; Dewald EL; Tommasini R; Divol L; Le Pape S; Berzak Hopkins L; Celliers PM; Landen O; Meezan NB; Mackinnon AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):021101. PubMed ID: 25768451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demonstration of the highest deuterium-tritium areal density using multiple-picket cryogenic designs on OMEGA.
    Goncharov VN; Sangster TC; Boehly TR; Hu SX; Igumenshchev IV; Marshall FJ; McCrory RL; Meyerhofer DD; Radha PB; Seka W; Skupsky S; Stoeckl C; Casey DT; Frenje JA; Petrasso RD
    Phys Rev Lett; 2010 Apr; 104(16):165001. PubMed ID: 20482056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct-drive double-shell implosion: A platform for burning-plasma physics studies.
    Hu SX; Epstein R; Theobald W; Xu H; Huang H; Goncharov VN; Regan SP; McKenty PW; Betti R; Campbell EM; Montgomery DS
    Phys Rev E; 2019 Dec; 100(6-1):063204. PubMed ID: 31962495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.