These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 30700905)
1. Heterozygous mutations cause genetic instability in a yeast model of cancer evolution. Coelho MC; Pinto RM; Murray AW Nature; 2019 Feb; 566(7743):275-278. PubMed ID: 30700905 [TBL] [Abstract][Full Text] [Related]
2. Diploid-specific [corrected] genome stability genes of S. cerevisiae: genomic screen reveals haploidization as an escape from persisting DNA rearrangement stress. Alabrudzinska M; Skoneczny M; Skoneczna A PLoS One; 2011; 6(6):e21124. PubMed ID: 21695049 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide mutation avalanches induced in diploid yeast cells by a base analog or an APOBEC deaminase. Lada AG; Stepchenkova EI; Waisertreiger IS; Noskov VN; Dhar A; Eudy JD; Boissy RJ; Hirano M; Rogozin IB; Pavlov YI PLoS Genet; 2013; 9(9):e1003736. PubMed ID: 24039593 [TBL] [Abstract][Full Text] [Related]
4. Small fitness effects and weak genetic interactions between deleterious mutations in heterozygous loci of the yeast Saccharomyces cerevisiae. Szafraniec K; Wloch DM; Sliwa P; Borts RH; Korona R Genet Res; 2003 Aug; 82(1):19-31. PubMed ID: 14621268 [TBL] [Abstract][Full Text] [Related]
5. Phenotypic and molecular evolution across 10,000 generations in laboratory budding yeast populations. Johnson MS; Gopalakrishnan S; Goyal J; Dillingham ME; Bakerlee CW; Humphrey PT; Jagdish T; Jerison ER; Kosheleva K; Lawrence KR; Min J; Moulana A; Phillips AM; Piper JC; Purkanti R; Rego-Costa A; McDonald MJ; Nguyen Ba AN; Desai MM Elife; 2021 Jan; 10():. PubMed ID: 33464204 [TBL] [Abstract][Full Text] [Related]
6. Regulation of homologous integration in yeast by the DNA repair proteins Ku70 and RecQ. Yamana Y; Maeda T; Ohba H; Usui T; Ogawa HI; Kusano K Mol Genet Genomics; 2005 Apr; 273(2):167-76. PubMed ID: 15803320 [TBL] [Abstract][Full Text] [Related]
7. Mutation of a single allele of the cancer susceptibility gene BRCA1 leads to genomic instability in human breast epithelial cells. Konishi H; Mohseni M; Tamaki A; Garay JP; Croessmann S; Karnan S; Ota A; Wong HY; Konishi Y; Karakas B; Tahir K; Abukhdeir AM; Gustin JP; Cidado J; Wang GM; Cosgrove D; Cochran R; Jelovac D; Higgins MJ; Arena S; Hawkins L; Lauring J; Gross AL; Heaphy CM; Hosokawa Y; Gabrielson E; Meeker AK; Visvanathan K; Argani P; Bachman KE; Park BH Proc Natl Acad Sci U S A; 2011 Oct; 108(43):17773-8. PubMed ID: 21987798 [TBL] [Abstract][Full Text] [Related]
8. Reciprocal mitotic recombination is the predominant mechanism for the loss of a heterozygous gene in Saccharomyces cerevisiae. Acuña G; Würgler FE; Sengstag C Environ Mol Mutagen; 1994; 24(4):307-16. PubMed ID: 7851343 [TBL] [Abstract][Full Text] [Related]
9. A genome-wide screen identifies genes that suppress the accumulation of spontaneous mutations in young and aged yeast cells. Novarina D; Janssens GE; Bokern K; Schut T; van Oerle NC; Kazemier HG; Veenhoff LM; Chang M Aging Cell; 2020 Feb; 19(2):e13084. PubMed ID: 31854076 [TBL] [Abstract][Full Text] [Related]
10. Single-Gene Deletions Contributing to Loss of Heterozygosity in Hoffert KM; Strome ED G3 (Bethesda); 2019 Sep; 9(9):2835-2850. PubMed ID: 31270132 [TBL] [Abstract][Full Text] [Related]
11. Heterozygous screen in Saccharomyces cerevisiae identifies dosage-sensitive genes that affect chromosome stability. Strome ED; Wu X; Kimmel M; Plon SE Genetics; 2008 Mar; 178(3):1193-207. PubMed ID: 18245329 [TBL] [Abstract][Full Text] [Related]
12. Overdominant Mutations Restrict Adaptive Loss of Heterozygosity at Linked Loci. Fisher KJ; Vignogna RC; Lang GI Genome Biol Evol; 2021 Aug; 13(8):. PubMed ID: 34363476 [TBL] [Abstract][Full Text] [Related]
13. Global analysis of genomic instability caused by DNA replication stress in Saccharomyces cerevisiae. Zheng DQ; Zhang K; Wu XC; Mieczkowski PA; Petes TD Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8114-E8121. PubMed ID: 27911848 [TBL] [Abstract][Full Text] [Related]
14. Spontaneous mutagenesis in haploid and diploid Saccharomyces cerevisiae. Ohnishi G; Endo K; Doi A; Fujita A; Daigaku Y; Nunoshiba T; Yamamoto K Biochem Biophys Res Commun; 2004 Dec; 325(3):928-33. PubMed ID: 15541379 [TBL] [Abstract][Full Text] [Related]
15. Masking and purging mutations following EMS treatment in haploid, diploid and tetraploid yeast (Saccharomyces cerevisiae). Mable BK; Otto SP Genet Res; 2001 Feb; 77(1):9-26. PubMed ID: 11279834 [TBL] [Abstract][Full Text] [Related]
16. Contrasting properties of gene-specific regulatory, coding, and copy number mutations in Saccharomyces cerevisiae: frequency, effects, and dominance. Gruber JD; Vogel K; Kalay G; Wittkopp PJ PLoS Genet; 2012 Feb; 8(2):e1002497. PubMed ID: 22346762 [TBL] [Abstract][Full Text] [Related]
17. Genetic instability in budding and fission yeast-sources and mechanisms. Skoneczna A; Kaniak A; Skoneczny M FEMS Microbiol Rev; 2015 Nov; 39(6):917-67. PubMed ID: 26109598 [TBL] [Abstract][Full Text] [Related]
18. An evolutionary advantage of haploidy in large yeast populations. Zeyl C; Vanderford T; Carter M Science; 2003 Jan; 299(5606):555-8. PubMed ID: 12543972 [TBL] [Abstract][Full Text] [Related]
19. Haploinsufficiency and the sex chromosomes from yeasts to humans. de Clare M; Pir P; Oliver SG BMC Biol; 2011 Feb; 9():15. PubMed ID: 21356089 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide genetic analysis of polyploidy in yeast. Storchová Z; Breneman A; Cande J; Dunn J; Burbank K; O'Toole E; Pellman D Nature; 2006 Oct; 443(7111):541-7. PubMed ID: 17024086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]