These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30701488)

  • 1. An Introduction to Methods for Discovery and Functional Analysis of MicroRNAs in Plants.
    Armenta-Medina A; Gillmor CS
    Methods Mol Biol; 2019; 1932():1-14. PubMed ID: 30701488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocols for miRNA Target Prediction in Plants.
    Sablok G; Yang K; Wen X
    Methods Mol Biol; 2019; 1970():65-73. PubMed ID: 30963488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets.
    Wang XJ; Reyes JL; Chua NH; Gaasterland T
    Genome Biol; 2004; 5(9):R65. PubMed ID: 15345049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-PLANT v2: an online resource for highly specific guide RNA spacers based on improved off-target analysis.
    Minkenberg B; Zhang J; Xie K; Yang Y
    Plant Biotechnol J; 2019 Jan; 17(1):5-8. PubMed ID: 30325102
    [No Abstract]   [Full Text] [Related]  

  • 5. The functional scope of plant microRNA-mediated silencing.
    Li J; Reichel M; Li Y; Millar AA
    Trends Plant Sci; 2014 Dec; 19(12):750-6. PubMed ID: 25242049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational identification of novel microRNAs and targets in Brassica napus.
    Xie FL; Huang SQ; Guo K; Xiang AL; Zhu YY; Nie L; Yang ZM
    FEBS Lett; 2007 Apr; 581(7):1464-74. PubMed ID: 17367786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Plant miRNA Targets.
    Pandey P; Srivastava PK; Pandey SP
    Methods Mol Biol; 2019; 1932():99-107. PubMed ID: 30701494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Nicotiana benthamiana microRNAs and their targets using high throughput sequencing and degradome analysis.
    Baksa I; Nagy T; Barta E; Havelda Z; Várallyay É; Silhavy D; Burgyán J; Szittya G
    BMC Genomics; 2015 Dec; 16():1025. PubMed ID: 26626050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery.
    Ahmad G; Amiji M
    Drug Discov Today; 2018 Mar; 23(3):519-533. PubMed ID: 29326075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small indels induced by CRISPR/Cas9 in the 5' region of microRNA lead to its depletion and Drosha processing retardance.
    Jiang Q; Meng X; Meng L; Chang N; Xiong J; Cao H; Liang Z
    RNA Biol; 2014; 11(10):1243-9. PubMed ID: 25590615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging Role of CRISPR/Cas9 Technology for MicroRNAs Editing in Cancer Research.
    Aquino-Jarquin G
    Cancer Res; 2017 Dec; 77(24):6812-6817. PubMed ID: 29208606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational identification and characterization of conserved miRNAs and their target genes in garlic (Allium sativum L.) expressed sequence tags.
    Panda D; Dehury B; Sahu J; Barooah M; Sen P; Modi MK
    Gene; 2014 Mar; 537(2):333-42. PubMed ID: 24434367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of CRISPR/Cas9 mediated virus resistance in agriculturally important crops.
    Khatodia S; Bhatotia K; Tuteja N
    Bioengineered; 2017 May; 8(3):274-279. PubMed ID: 28581909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive analysis of small RNA-seq data reveals that combination of miRNA with its isomiRs increase the accuracy of target prediction in Arabidopsis thaliana.
    Ahmed F; Senthil-Kumar M; Lee S; Dai X; Mysore KS; Zhao PX
    RNA Biol; 2014; 11(11):1414-29. PubMed ID: 25629686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational prediction and experimental verification of miRNAs in Panicum miliaceum L.
    Wu Y; Du J; Wang X; Fang X; Shan W; Liang Z
    Sci China Life Sci; 2012 Sep; 55(9):807-17. PubMed ID: 23015130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends.
    German MA; Pillay M; Jeong DH; Hetawal A; Luo S; Janardhanan P; Kannan V; Rymarquis LA; Nobuta K; German R; De Paoli E; Lu C; Schroth G; Meyers BC; Green PJ
    Nat Biotechnol; 2008 Aug; 26(8):941-6. PubMed ID: 18542052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semirna: searching for plant miRNAs using target sequences.
    Muñoz-Mérida A; Perkins JR; Viguera E; Thode G; Bejarano ER; Pérez-Pulido AJ
    OMICS; 2012 Apr; 16(4):168-77. PubMed ID: 22433074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment.
    Liu G; Li J; Godwin ID
    Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational evidence for hundreds of non-conserved plant microRNAs.
    Lindow M; Krogh A
    BMC Genomics; 2005 Sep; 6():119. PubMed ID: 16159385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.