These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30701506)

  • 1. Design and High-Throughput Generation of Artificial Small RNA Constructs for Plants.
    Carbonell A
    Methods Mol Biol; 2019; 1932():247-260. PubMed ID: 30701506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New generation of artificial MicroRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis.
    Carbonell A; Takeda A; Fahlgren N; Johnson SC; Cuperus JT; Carrington JC
    Plant Physiol; 2014 May; 165(1):15-29. PubMed ID: 24647477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systemic silencing of an endogenous plant gene by two classes of mobile 21-nucleotide artificial small RNAs.
    Cisneros AE; de la Torre-Montaña A; Carbonell A
    Plant J; 2022 May; 110(4):1166-1181. PubMed ID: 35277899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. P-SAMS: a web site for plant artificial microRNA and synthetic trans-acting small interfering RNA design.
    Fahlgren N; Hill ST; Carrington JC; Carbonell A
    Bioinformatics; 2016 Jan; 32(1):157-8. PubMed ID: 26382195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial microRNAs and synthetic trans-acting small interfering RNAs interfere with viroid infection.
    Carbonell A; Daròs JA
    Mol Plant Pathol; 2017 Jun; 18(5):746-753. PubMed ID: 28026103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast-Forward Identification of Highly Effective Artificial Small RNAs Against Different Tomato spotted wilt virus Isolates.
    Carbonell A; López C; Daròs JA
    Mol Plant Microbe Interact; 2019 Feb; 32(2):142-156. PubMed ID: 30070616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Small RNA-Based Silencing Tools for Antiviral Resistance in Plants.
    Cisneros AE; Carbonell A
    Plants (Basel); 2020 May; 9(6):. PubMed ID: 32466363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast-forward generation of effective artificial small RNAs for enhanced antiviral defense in plants.
    Carbonell A; Carrington JC; Daròs JA
    RNA Dis; 2016; 3(1):. PubMed ID: 26925463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, Synthesis, and Functional Analysis of Highly Specific Artificial Small RNAs with Antiviral Activity in Plants.
    Carbonell A; Daròs JA
    Methods Mol Biol; 2019; 2028():231-246. PubMed ID: 31228118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-targeting of viral RNAs with synthetic trans-acting small interfering RNAs enhances plant antiviral resistance.
    Carbonell A; Lisón P; Daròs JA
    Plant J; 2019 Nov; 100(4):720-737. PubMed ID: 31350772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel constructs for efficient cloning of sRNA-encoding DNA and uniform silencing of plant genes employing artificial trans-acting small interfering RNA.
    Baykal U; Liu H; Chen X; Nguyen HT; Zhang ZJ
    Plant Cell Rep; 2016 Oct; 35(10):2137-50. PubMed ID: 27417696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine-Tuning Plant Gene Expression with Synthetic Trans-Acting Small Interfering RNAs.
    López-Dolz L; Spada M; Daròs JA; Carbonell A
    Methods Mol Biol; 2022; 2408():227-242. PubMed ID: 35325426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine-tune control of targeted RNAi efficacy by plant artificial small RNAs.
    López-Dolz L; Spada M; Daròs JA; Carbonell A
    Nucleic Acids Res; 2020 Jun; 48(11):6234-6250. PubMed ID: 32396204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vectors and methods for hairpin RNA and artificial microRNA-mediated gene silencing in plants.
    Eamens AL; Waterhouse PM
    Methods Mol Biol; 2011; 701():179-97. PubMed ID: 21181531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, Construction, and Validation of Artificial MicroRNA Vectors Using Agrobacterium-Mediated Transient Expression System.
    Bhagwat B; Chi M; Han D; Tang H; Tang G; Xiang Y
    Methods Mol Biol; 2016; 1405():149-62. PubMed ID: 26843173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts.
    Khraiwesh B; Ossowski S; Weigel D; Reski R; Frank W
    Plant Physiol; 2008 Oct; 148(2):684-93. PubMed ID: 18753280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in vivo transient expression system can be applied for rapid and effective selection of artificial microRNA constructs for plant stable genetic transformation.
    Bhagwat B; Chi M; Su L; Tang H; Tang G; Xiang Y
    J Genet Genomics; 2013 May; 40(5):261-70. PubMed ID: 23706301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered Artificial MicroRNA Precursors Facilitate Cloning and Gene Silencing in Arabidopsis and Rice.
    Zhang D; Zhang N; Shen W; Li JF
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31717686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric miRNA precursors.
    Carbonell A; Fahlgren N; Mitchell S; Cox KL; Reilly KC; Mockler TC; Carrington JC
    Plant J; 2015 Jun; 82(6):1061-1075. PubMed ID: 25809382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis of transitivity in plant RNA silencing.
    Choudhary S; Thakur S; Bhardwaj P
    Mol Biol Rep; 2019 Aug; 46(4):4645-4660. PubMed ID: 31098805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.