These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 30701970)
1. Aromatic Residues at the Dimer-Dimer Interface in the Peroxiredoxin Tsa1 Facilitate Decamer Formation and Biological Function. Loberg MA; Hurtig JE; Graff AH; Allan KM; Buchan JA; Spencer MK; Kelly JE; Clodfelter JE; Morano KA; Lowther WT; West JD Chem Res Toxicol; 2019 Mar; 32(3):474-483. PubMed ID: 30701970 [TBL] [Abstract][Full Text] [Related]
2. Disulfide biochemistry in 2-cys peroxiredoxin: requirement of Glu50 and Arg146 for the reduction of yeast Tsa1 by thioredoxin. Tairum CA; de Oliveira MA; Horta BB; Zara FJ; Netto LE J Mol Biol; 2012 Nov; 424(1-2):28-41. PubMed ID: 22985967 [TBL] [Abstract][Full Text] [Related]
3. Peroxiredoxin Tsa1 is the key peroxidase suppressing genome instability and protecting against cell death in Saccharomyces cerevisiae. Iraqui I; Kienda G; Soeur J; Faye G; Baldacci G; Kolodner RD; Huang ME PLoS Genet; 2009 Jun; 5(6):e1000524. PubMed ID: 19543365 [TBL] [Abstract][Full Text] [Related]
4. The yeast Tsa1 peroxiredoxin is a ribosome-associated antioxidant. Trotter EW; Rand JD; Vickerstaff J; Grant CM Biochem J; 2008 May; 412(1):73-80. PubMed ID: 18271751 [TBL] [Abstract][Full Text] [Related]
5. Human peroxiredoxin PrxI is an orthologue of yeast Tsa1, capable of suppressing genome instability in Saccharomyces cerevisiae. Iraqui I; Faye G; Ragu S; Masurel-Heneman A; Kolodner RD; Huang ME Cancer Res; 2008 Feb; 68(4):1055-63. PubMed ID: 18281480 [TBL] [Abstract][Full Text] [Related]
6. Structure of TSA2 reveals novel features of the active-site loop of peroxiredoxins. Nielsen MH; Kidmose RT; Jenner LB Acta Crystallogr D Struct Biol; 2016 Jan; 72(Pt 1):158-67. PubMed ID: 26894543 [TBL] [Abstract][Full Text] [Related]
7. Peroxiredoxin chaperone activity is critical for protein homeostasis in zinc-deficient yeast. MacDiarmid CW; Taggart J; Kerdsomboon K; Kubisiak M; Panascharoen S; Schelble K; Eide DJ J Biol Chem; 2013 Oct; 288(43):31313-27. PubMed ID: 24022485 [TBL] [Abstract][Full Text] [Related]
8. Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Parsonage D; Youngblood DS; Sarma GN; Wood ZA; Karplus PA; Poole LB Biochemistry; 2005 Aug; 44(31):10583-92. PubMed ID: 16060667 [TBL] [Abstract][Full Text] [Related]
9. Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics. Ogusucu R; Rettori D; Munhoz DC; Netto LE; Augusto O Free Radic Biol Med; 2007 Feb; 42(3):326-34. PubMed ID: 17210445 [TBL] [Abstract][Full Text] [Related]
10. Requirement of peroxiredoxin on the stationary phase of yeast cell growth. Watanabe T; Irokawa H; Ogasawara A; Iwai K; Kuge S J Toxicol Sci; 2014 Feb; 39(1):51-8. PubMed ID: 24418709 [TBL] [Abstract][Full Text] [Related]
11. Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Wood ZA; Poole LB; Hantgan RR; Karplus PA Biochemistry; 2002 Apr; 41(17):5493-504. PubMed ID: 11969410 [TBL] [Abstract][Full Text] [Related]
12. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Biteau B; Labarre J; Toledano MB Nature; 2003 Oct; 425(6961):980-4. PubMed ID: 14586471 [TBL] [Abstract][Full Text] [Related]
13. Experimentally Dissecting the Origins of Peroxiredoxin Catalysis. Nelson KJ; Perkins A; Van Swearingen AED; Hartman S; Brereton AE; Parsonage D; Salsbury FR; Karplus PA; Poole LB Antioxid Redox Signal; 2018 Mar; 28(7):521-536. PubMed ID: 28375740 [TBL] [Abstract][Full Text] [Related]
14. In vivo parameters influencing 2-Cys Prx oligomerization: The role of enzyme sulfinylation. Noichri Y; Palais G; Ruby V; D'Autreaux B; Delaunay-Moisan A; Nyström T; Molin M; Toledano MB Redox Biol; 2015 Dec; 6():326-333. PubMed ID: 26335398 [TBL] [Abstract][Full Text] [Related]
15. Life span extension and H(2)O(2) resistance elicited by caloric restriction require the peroxiredoxin Tsa1 in Saccharomyces cerevisiae. Molin M; Yang J; Hanzén S; Toledano MB; Labarre J; Nyström T Mol Cell; 2011 Sep; 43(5):823-33. PubMed ID: 21884982 [TBL] [Abstract][Full Text] [Related]
16. Catalytic Thr or Ser Residue Modulates Structural Switches in 2-Cys Peroxiredoxin by Distinct Mechanisms. Tairum CA; Santos MC; Breyer CA; Geyer RR; Nieves CJ; Portillo-Ledesma S; Ferrer-Sueta G; Toledo JC; Toyama MH; Augusto O; Netto LE; de Oliveira MA Sci Rep; 2016 Sep; 6():33133. PubMed ID: 27629822 [TBL] [Abstract][Full Text] [Related]
17. Oxygen metabolism and reactive oxygen species cause chromosomal rearrangements and cell death. Ragu S; Faye G; Iraqui I; Masurel-Heneman A; Kolodner RD; Huang ME Proc Natl Acad Sci U S A; 2007 Jun; 104(23):9747-52. PubMed ID: 17535927 [TBL] [Abstract][Full Text] [Related]
18. Loss of the thioredoxin reductase Trr1 suppresses the genomic instability of peroxiredoxin tsa1 mutants. Ragu S; Dardalhon M; Sharma S; Iraqui I; Buhagiar-Labarchède G; Grondin V; Kienda G; Vernis L; Chanet R; Kolodner RD; Huang ME; Faye G PLoS One; 2014; 9(9):e108123. PubMed ID: 25247923 [TBL] [Abstract][Full Text] [Related]
19. Probing the mechanism of the peroxiredoxin decamer interaction with its reductase sulfiredoxin from the single molecule to the solution scale. Beaussart A; Canonico F; Mazon H; Hidalgo J; Cianférani S; Le Cordier H; Kriznik A; Rahuel-Clermont S Nanoscale Horiz; 2022 May; 7(5):515-525. PubMed ID: 35234779 [TBL] [Abstract][Full Text] [Related]
20. Redox-dependent Regulation of Gluconeogenesis by a Novel Mechanism Mediated by a Peroxidatic Cysteine of Peroxiredoxin. Irokawa H; Tachibana T; Watanabe T; Matsuyama Y; Motohashi H; Ogasawara A; Iwai K; Naganuma A; Kuge S Sci Rep; 2016 Sep; 6():33536. PubMed ID: 27634403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]