These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 30702090)
1. In situ colorimetric detection of glyphosate on plant tissues using cysteamine-modified gold nanoparticles. Tu Q; Yang T; Qu Y; Gao S; Zhang Z; Zhang Q; Wang Y; Wang J; He L Analyst; 2019 Mar; 144(6):2017-2025. PubMed ID: 30702090 [TBL] [Abstract][Full Text] [Related]
2. Colorimetric determination of fumonisin B1 based on the aggregation of cysteamine-functionalized gold nanoparticles induced by a product of its hydrolysis. Chotchuang T; Cheewasedtham W; Jayeoye TJ; Rujiralai T Mikrochim Acta; 2019 Aug; 186(9):655. PubMed ID: 31463772 [TBL] [Abstract][Full Text] [Related]
3. A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles. Kang J; Zhang Y; Li X; Miao L; Wu A ACS Appl Mater Interfaces; 2016 Jan; 8(1):1-5. PubMed ID: 26673452 [TBL] [Abstract][Full Text] [Related]
4. Real-Time and in Situ Monitoring of Pesticide Penetration in Edible Leaves by Surface-Enhanced Raman Scattering Mapping. Yang T; Zhang Z; Zhao B; Hou R; Kinchla A; Clark JM; He L Anal Chem; 2016 May; 88(10):5243-50. PubMed ID: 27099952 [TBL] [Abstract][Full Text] [Related]
5. Cysteamine-Modified Gold Nanoparticles as a Colorimetric Sensor for the Rapid Detection of Gentamicin. Gukowsky JC; Tan C; Han Z; He L J Food Sci; 2018 Jun; 83(6):1631-1638. PubMed ID: 29786853 [TBL] [Abstract][Full Text] [Related]
6. Highly Sensitive Aptamer-Based Colorimetric Detection of Melamine in Raw Milk with Cysteamine-Stabilized Gold Nanoparticles. Zheng H; Li Y; Xu J; Bie J; Liu X; Guo J; Luo Y; Shen F; Sun C; Yu Y J Nanosci Nanotechnol; 2017 Feb; 17(2):853-61. PubMed ID: 29668219 [TBL] [Abstract][Full Text] [Related]
7. Colorimetric detection of melamine in complex matrices based on cysteamine-modified gold nanoparticles. Liang X; Wei H; Cui Z; Deng J; Zhang Z; You X; Zhang XE Analyst; 2011 Jan; 136(1):179-83. PubMed ID: 20877886 [TBL] [Abstract][Full Text] [Related]
8. Colorimetric Sensor Array Based on Gold Nanoparticles with Diverse Surface Charges for Microorganisms Identification. Li B; Li X; Dong Y; Wang B; Li D; Shi Y; Wu Y Anal Chem; 2017 Oct; 89(20):10639-10643. PubMed ID: 28933144 [TBL] [Abstract][Full Text] [Related]
9. A Simple and Green Route for Room-Temperature Synthesis of Gold Nanoparticles and Selective Colorimetric Detection of Cysteine. Bagci PO; Wang YC; Gunasekaran S J Food Sci; 2015 Sep; 80(9):N2071-8. PubMed ID: 26239641 [TBL] [Abstract][Full Text] [Related]
10. Comparison of Glyphosate Detection by Surface-Enhanced Raman Spectroscopy Using Gold and Silver Nanoparticles at Different Laser Excitations. Mikac L; Rigó I; Škrabić M; Ivanda M; Veres M Molecules; 2022 Sep; 27(18):. PubMed ID: 36144498 [TBL] [Abstract][Full Text] [Related]
11. A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes. Cao R; Li B Chem Commun (Camb); 2011 Mar; 47(10):2865-7. PubMed ID: 21246153 [TBL] [Abstract][Full Text] [Related]
12. Colorimetric sensing strategy for mercury(II) and melamine utilizing cysteamine-modified gold nanoparticles. Ma Y; Jiang L; Mei Y; Song R; Tian D; Huang H Analyst; 2013 Sep; 138(18):5338-43. PubMed ID: 23875182 [TBL] [Abstract][Full Text] [Related]
13. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles. Kumar N; Seth R; Kumar H Anal Biochem; 2014 Jul; 456():43-9. PubMed ID: 24727351 [TBL] [Abstract][Full Text] [Related]
14. Colorimetric sensing of selenocystine using gold nanoparticles. Liu L; Wang X; Yang J; Bai Y Anal Biochem; 2017 Oct; 535():19-24. PubMed ID: 28739132 [TBL] [Abstract][Full Text] [Related]
15. Development of extremely stable dual functionalized gold nanoparticles for effective colorimetric detection of clenbuterol and ractopamine in human urine samples. Simon T; Shellaiah M; Steffi P; Sun KW; Ko FH Anal Chim Acta; 2018 Sep; 1023():96-104. PubMed ID: 29754612 [TBL] [Abstract][Full Text] [Related]
16. Cysteamine-decorated gold nanoparticles for plasmon-based colorimetric on-site sensors for detecting cyanide ions using the smart-phone color ratio and for catalytic reduction of 4-nitrophenol. Rajamanikandan R; Shanmugaraj K; Ilanchelian M; Ju H Chemosphere; 2023 Mar; 316():137836. PubMed ID: 36642146 [TBL] [Abstract][Full Text] [Related]
17. Sensitive colorimetric detection of melamine in processed raw milk using asymmetrically PEGylated gold nanoparticles. Chen XY; Ha W; Shi YP Talanta; 2019 Mar; 194():475-484. PubMed ID: 30609561 [TBL] [Abstract][Full Text] [Related]
18. Visual monitoring and optical recognition of digoxin by functionalized AuNPs and triangular AgNPs as efficient optical nano-probes. Mohammadzadeh A; Pashazadeh-Panahi P; Hasanzadeh M J Mol Recognit; 2021 Oct; 34(10):e2917. PubMed ID: 34106492 [TBL] [Abstract][Full Text] [Related]
20. Ultrasensitive colorimetric detection of heparin based on self-assembly of gold nanoparticles on graphene oxide. Fu X; Chen L; Li J Analyst; 2012 Aug; 137(16):3653-8. PubMed ID: 22741162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]