BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30702095)

  • 1. "Top" or "bottom" switches of a cyclohexanone monooxygenase controlling the enantioselectivity of the sandwiched substrate.
    Hu Y; Wang J; Cen Y; Zheng H; Huang M; Lin X; Wu Q
    Chem Commun (Camb); 2019 Feb; 55(15):2198-2201. PubMed ID: 30702095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New bioorganic reagents: evolved cyclohexanone monooxygenase--why is it more selective?
    Kayser MM; Clouthier CM
    J Org Chem; 2006 Oct; 71(22):8424-30. PubMed ID: 17064015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the substrate selectivities and enantioselectivities of eight novel Baeyer-Villiger monooxygenases toward alkyl-substituted cyclohexanones.
    Kyte BG; Rouvière P; Cheng Q; Stewart JD
    J Org Chem; 2004 Jan; 69(1):12-7. PubMed ID: 14703373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous biocatalyst production and Baeyer-Villiger oxidation for bioconversion of cyclohexanone by recombinant Escherichia coli expressing cyclohexanone monooxygenase.
    Lee WH; Park YC; Lee DH; Park K; Seo JH
    Appl Biochem Biotechnol; 2005; 121-124():827-36. PubMed ID: 15930562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum mechanical/molecular mechanical study on the enantioselectivity of the enzymatic Baeyer-Villiger reaction of 4-hydroxycyclohexanone.
    Polyak I; Reetz MT; Thiel W
    J Phys Chem B; 2013 May; 117(17):4993-5001. PubMed ID: 23600847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switch in Cofactor Specificity of a Baeyer-Villiger Monooxygenase.
    Beier A; Bordewick S; Genz M; Schmidt S; van den Bergh T; Peters C; Joosten HJ; Bornscheuer UT
    Chembiochem; 2016 Dec; 17(24):2312-2315. PubMed ID: 27735116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switching the Regioselectivity of a Cyclohexanone Monooxygenase toward (+)-trans-Dihydrocarvone by Rational Protein Design.
    Balke K; Schmidt S; Genz M; Bornscheuer UT
    ACS Chem Biol; 2016 Jan; 11(1):38-43. PubMed ID: 26505211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced production of ε-caprolactone by coexpression of bacterial hemoglobin gene in recombinant Escherichia coli expressing cyclohexanone monooxygenase gene.
    Lee WH; Park EH; Kim MD
    J Microbiol Biotechnol; 2014 Dec; 24(12):1685-9. PubMed ID: 25269815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed evolution of phenylacetone monooxygenase as an active catalyst for the Baeyer-Villiger conversion of cyclohexanone to caprolactone.
    Parra LP; Acevedo JP; Reetz MT
    Biotechnol Bioeng; 2015 Jul; 112(7):1354-64. PubMed ID: 25675885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric Baeyer-Villiger oxidations of 4-mono- and 4,4-disubstituted cyclohexanones by whole cells of engineered Escherichia coli.
    Mihovilovic MD; Chen G; Wang S; Kyte B; Rochon F; Kayser MM; Stewart JD
    J Org Chem; 2001 Feb; 66(3):733-8. PubMed ID: 11430090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing new Baeyer-Villiger monooxygenases using restricted CASTing.
    Clouthier CM; Kayser MM; Reetz MT
    J Org Chem; 2006 Oct; 71(22):8431-7. PubMed ID: 17064016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and Crystal Structure of a Robust Cyclohexanone Monooxygenase.
    Romero E; Castellanos JR; Mattevi A; Fraaije MW
    Angew Chem Int Ed Engl; 2016 Dec; 55(51):15852-15855. PubMed ID: 27873437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Productivity of cyclohexanone oxidation of the recombinant Corynebacterium glutamicum expressing chnB of Acinetobacter calcoaceticus.
    Doo EH; Lee WH; Seo HS; Seo JH; Park JB
    J Biotechnol; 2009 Jun; 142(2):164-9. PubMed ID: 19397940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced production of epsilon-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene.
    Lee WH; Park JB; Park K; Kim MD; Seo JH
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):329-38. PubMed ID: 17541782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viability of free and encapsulated Escherichia coli overexpressing cyclopentanone monooxygenase monitored during model Baeyer-Villiger biooxidation by confocal laser scanning microscopy.
    Schenkmayerová A; Bučko M; Gemeiner P; Chorvát D; Lacík I
    Biotechnol Lett; 2012 Feb; 34(2):309-14. PubMed ID: 21983971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient enzymatic Baeyer-Villiger oxidation by engineered Escherichia coli cells under non-growing conditions.
    Walton AZ; Stewart JD
    Biotechnol Prog; 2002; 18(2):262-8. PubMed ID: 11934294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial Baeyer-Villiger oxidation: stereopreference and substrate acceptance of cyclohexanone monooxygenase mutants prepared by directed evolution.
    Mihovilovic MD; Rudroff F; Winninger A; Schneider T; Schulz F; Reetz MT
    Org Lett; 2006 Mar; 8(6):1221-4. PubMed ID: 16524308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial monooxygenase amperometric biosensor for monitoring of Baeyer-Villiger biotransformation.
    Schenkmayerová A; Bučko M; Gemeiner P; Katrlík J
    Biosens Bioelectron; 2013 Dec; 50():235-8. PubMed ID: 23871870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards practical Baeyer-Villiger-monooxygenases: design of cyclohexanone monooxygenase mutants with enhanced oxidative stability.
    Opperman DJ; Reetz MT
    Chembiochem; 2010 Dec; 11(18):2589-96. PubMed ID: 21080396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scale-up of Baeyer-Villiger monooxygenase-catalyzed synthesis of enantiopure compounds.
    Geitner K; Rehdorf J; Snajdrova R; Bornscheuer UT
    Appl Microbiol Biotechnol; 2010 Nov; 88(5):1087-93. PubMed ID: 20689951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.