These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 30702269)
1. Electron Highways into Nanochannels of Covalent Organic Frameworks for High Electrical Conductivity and Energy Storage. Wu Y; Yan D; Zhang Z; Matsushita MM; Awaga K ACS Appl Mater Interfaces; 2019 Feb; 11(8):7661-7665. PubMed ID: 30702269 [TBL] [Abstract][Full Text] [Related]
2. Post-synthetic Modification of Covalent Organic Frameworks through in situ Polymerization of Aniline for Enhanced Capacitive Energy Storage. Dutta TK; Patra A Chem Asian J; 2021 Jan; 16(2):158-164. PubMed ID: 33245204 [TBL] [Abstract][Full Text] [Related]
3. Phenazine-Based Covalent Organic Framework Cathode Materials with High Energy and Power Densities. Vitaku E; Gannett CN; Carpenter KL; Shen L; Abruña HD; Dichtel WR J Am Chem Soc; 2020 Jan; 142(1):16-20. PubMed ID: 31820958 [TBL] [Abstract][Full Text] [Related]
4. Superior Charge Storage and Power Density of a Conducting Polymer-Modified Covalent Organic Framework. Mulzer CR; Shen L; Bisbey RP; McKone JR; Zhang N; Abruña HD; Dichtel WR ACS Cent Sci; 2016 Sep; 2(9):667-673. PubMed ID: 27725966 [TBL] [Abstract][Full Text] [Related]
5. Ultrastable Triazine-Based Covalent Organic Framework with an Interlayer Hydrogen Bonding for Supercapacitor Applications. Li L; Lu F; Xue R; Ma B; Li Q; Wu N; Liu H; Yao W; Guo H; Yang W ACS Appl Mater Interfaces; 2019 Jul; 11(29):26355-26363. PubMed ID: 31260241 [TBL] [Abstract][Full Text] [Related]
6. Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage. Xu F; Xu H; Chen X; Wu D; Wu Y; Liu H; Gu C; Fu R; Jiang D Angew Chem Int Ed Engl; 2015 Jun; 54(23):6814-8. PubMed ID: 25908404 [TBL] [Abstract][Full Text] [Related]
7. Integrated carbon nanotube and triazine-based covalent organic framework composites for high capacitance performance. Liu L; Cui D; Zhang S; Xie W; Yao C; Xu Y Dalton Trans; 2023 Feb; 52(9):2762-2769. PubMed ID: 36749640 [TBL] [Abstract][Full Text] [Related]
8. Integrating Multiple Redox-Active Units into Conductive Covalent Organic Frameworks for High-Performance Sodium-Ion Batteries. Ke SW; Li W; Gao L; Su J; Luo R; Yuan S; He P; Zuo JL Angew Chem Int Ed Engl; 2024 Sep; ():e202417493. PubMed ID: 39292224 [TBL] [Abstract][Full Text] [Related]
9. Weak Intermolecular Interactions in Covalent Organic Framework-Carbon Nanofiber Based Crystalline yet Flexible Devices. Mohammed AK; Vijayakumar V; Halder A; Ghosh M; Addicoat M; Bansode U; Kurungot S; Banerjee R ACS Appl Mater Interfaces; 2019 Aug; 11(34):30828-30837. PubMed ID: 31386343 [TBL] [Abstract][Full Text] [Related]
10. Highly Conductive Covalent-Organic Framework Films. Wang R; Lyu H; Poon Ho GSH; Chen H; Yuan Y; Bang KT; Kim Y Small; 2024 Jan; 20(4):e2306634. PubMed ID: 37702138 [TBL] [Abstract][Full Text] [Related]
11. Grotthuss Proton-Conductive Covalent Organic Frameworks for Efficient Proton Pseudocapacitors. Yang Y; Zhang P; Hao L; Cheng P; Chen Y; Zhang Z Angew Chem Int Ed Engl; 2021 Sep; 60(40):21838-21845. PubMed ID: 34369054 [TBL] [Abstract][Full Text] [Related]
12. Flexible Linker-Based Triazine-Functionalized 2D Covalent Organic Frameworks for Supercapacitor and Gas Sorption Applications. Kumar Y; Ahmad I; Rawat A; Pandey RK; Mohanty P; Pandey R ACS Appl Mater Interfaces; 2024 Mar; 16(9):11605-11616. PubMed ID: 38407024 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of Highly Conductive Porous Cellulose/PEDOT:PSS Nanocomposite Paper via Post-Treatment. Ko Y; Kim J; Kim D; Kwon G; Yamauchi Y; You J Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 31013935 [TBL] [Abstract][Full Text] [Related]
14. Janus Dione-Based Conjugated Covalent Organic Frameworks with High Conductivity as Superior Cathode Materials. Xu X; Zhang S; Xu K; Chen H; Fan X; Huang N J Am Chem Soc; 2023 Jan; 145(2):1022-1030. PubMed ID: 36584327 [TBL] [Abstract][Full Text] [Related]
15. Redox Active Metal- and Covalent Organic Frameworks for Energy Storage: Balancing Porosity and Electrical Conductivity. Zhang Y; Riduan SN; Wang J Chemistry; 2017 Nov; 23(65):16419-16431. PubMed ID: 28766817 [TBL] [Abstract][Full Text] [Related]
16. Triazine covalent organic framework (COF)/θ-Al Liu L; Cui D; Zhang S; Xie W; Yao C; Xu N; Xu Y Dalton Trans; 2023 May; 52(18):6138-6145. PubMed ID: 37070778 [TBL] [Abstract][Full Text] [Related]
17. Interlayer Hydrogen-Bonded Covalent Organic Frameworks as High-Performance Supercapacitors. Halder A; Ghosh M; Khayum M A; Bera S; Addicoat M; Sasmal HS; Karak S; Kurungot S; Banerjee R J Am Chem Soc; 2018 Sep; 140(35):10941-10945. PubMed ID: 30132332 [TBL] [Abstract][Full Text] [Related]
18. COF-Based Electrodes with Vertically Supported Tentacle Array for Ultrahigh Stability Flexible Energy Storage. He Y; An N; Meng C; Xiao L; Wei Q; Zhou Y; Yang Y; Li Z; Hu Z ACS Appl Mater Interfaces; 2022 Dec; 14(51):57328-57339. PubMed ID: 36525593 [TBL] [Abstract][Full Text] [Related]
19. Three-Dimensional Tetrathiafulvalene-Based Covalent Organic Frameworks for Tunable Electrical Conductivity. Li H; Chang J; Li S; Guan X; Li D; Li C; Tang L; Xue M; Yan Y; Valtchev V; Qiu S; Fang Q J Am Chem Soc; 2019 Aug; 141(34):13324-13329. PubMed ID: 31398976 [TBL] [Abstract][Full Text] [Related]
20. High-Lithium-Affinity Chemically Exfoliated 2D Covalent Organic Frameworks. Chen X; Li Y; Wang L; Xu Y; Nie A; Li Q; Wu F; Sun W; Zhang X; Vajtai R; Ajayan PM; Chen L; Wang Y Adv Mater; 2019 Jul; 31(29):e1901640. PubMed ID: 31155765 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]