These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30702692)

  • 1. Simulation and realization of a second-order quantum-interference-based quantum clock synchronization at the femtosecond level.
    Quan R; Dong R; Zhai Y; Hou F; Xiang X; Zhou H; Lv C; Wang Z; You L; Liu T; Zhang S
    Opt Lett; 2019 Feb; 44(3):614-617. PubMed ID: 30702692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of quantum synchronization based on second-order quantum coherence of entangled photons.
    Quan R; Zhai Y; Wang M; Hou F; Wang S; Xiang X; Liu T; Zhang S; Dong R
    Sci Rep; 2016 Jul; 6():30453. PubMed ID: 27452276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of field two-way quantum synchronization of distant clocks across a 7 km deployed fiber link.
    Quan R; Hong H; Xue W; Quan H; Zhao W; Xiang X; Liu Y; Cao M; Liu T; Zhang S; Dong R
    Opt Express; 2022 Mar; 30(7):10269-10279. PubMed ID: 35472998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of a twin-beam state-based clock synchronization system with dispersion-free HOM feedback.
    Xie M; Zhang H; Lin Z; Long GL
    Opt Express; 2021 Aug; 29(18):28607-28618. PubMed ID: 34614987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-precision nonlocal temporal correlation identification of entangled photon pairs for quantum clock synchronization.
    Quan R; Dong R; Xiang X; Li B; Liu T; Zhang S
    Rev Sci Instrum; 2020 Dec; 91(12):123109. PubMed ID: 33379945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sub-ps resolution clock-offset measurement over a 114 km fiber link using linear optical sampling.
    Abuduweili A; Chen X; Chen Z; Meng F; Wu T; Guo H; Zhang Z
    Opt Express; 2020 Dec; 28(26):39400-39412. PubMed ID: 33379490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Time-Synchronization Algorithm Based on Direct Compensation of Disturbance Effects.
    Seo YD; Son KJ; An GS; Nam KD; Chang TG; Kang SH
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31405102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Qubit-Based Clock Synchronization for QKD Systems Using a Bayesian Approach.
    Cochran RD; Gauthier DJ
    Entropy (Basel); 2021 Jul; 23(8):. PubMed ID: 34441128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fiber-optic joint time and frequency transmission with enhanced time precision.
    Zuo F; Li Q; Xie K; Hu L; Chen J; Wu G
    Opt Lett; 2022 Feb; 47(4):1005-1008. PubMed ID: 35167580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum-enhanced positioning and clock synchronization.
    Giovannetti V; Lloyd S; Maccone L
    Nature; 2001 Jul; 412(6845):417-9. PubMed ID: 11473311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A clock synchronization method based on quantum entanglement.
    Shi J; Shen S
    Sci Rep; 2022 Jun; 12(1):10185. PubMed ID: 35715432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chirped frequency transfer: a tool for synchronization and time transfer.
    Raupach SM; Grosche G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):920-9. PubMed ID: 24859656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum clock synchronization based on shared prior entanglement.
    Jozsa R; Abrams DS; Dowling JP; Williams CP
    Phys Rev Lett; 2000 Aug; 85(9):2010-3. PubMed ID: 10970670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography.
    Okano M; Lim HH; Okamoto R; Nishizawa N; Kurimura S; Takeuchi S
    Sci Rep; 2015 Dec; 5():18042. PubMed ID: 26657190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two synchronized modes of ultrashort optical pulses in a two-beam pumped Ti:sapphire laser.
    Zhu C; Zhang G; Xue B; Zhai X
    Appl Opt; 2014 Sep; 53(27):6162-7. PubMed ID: 25322092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneously precise frequency transfer and time synchronization using feed-forward compensation technique via 120 km fiber link.
    Chen X; Lu J; Cui Y; Zhang J; Lu X; Tian X; Ci C; Liu B; Wu H; Tang T; Shi K; Zhang Z
    Sci Rep; 2015 Dec; 5():18343. PubMed ID: 26691731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronizing single-shot high-energy iodine photodissociation laser PALS and high-repetition-rate femtosecond Ti:sapphire laser system.
    Dostal J; Dudzak R; Pisarczyk T; Pfeifer M; Huynh J; Chodukowski T; Kalinowska Z; Krousky E; Skala J; Hrebicek J; Medrik T; Golasowski J; Juha L; Ullschmied J
    Rev Sci Instrum; 2017 Apr; 88(4):045109. PubMed ID: 28456257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-precision synchronization detection method for bistatic radar.
    Du B; Feng D; Sun X
    Rev Sci Instrum; 2019 Mar; 90(3):034705. PubMed ID: 30927773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Time Deviation in Packet-Based Synchronization.
    Weiss MA; Shenoi K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Apr; 63(4):531-7. PubMed ID: 26529756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributed Nodes-Based Collaborative Sustaining of Precision Clock Synchronization Upon Master Clock Failure in IEEE 1588 System.
    Son KJ; Chang TG
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33066047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.