These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30702706)

  • 1. Formation of high-quality photonic nanojets by decorating spider silk.
    Lin CB; Huang ZH; Liu CY
    Opt Lett; 2019 Feb; 44(3):667-670. PubMed ID: 30702706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and optical studies on selected web spinning spider silks.
    Karthikeyani R; Divya A; Mathavan T; Asath RM; Benial AM; Muthuchelian K
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 170():111-6. PubMed ID: 27423109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired one-dimensional materials for directional liquid transport.
    Ju J; Zheng Y; Jiang L
    Acc Chem Res; 2014 Aug; 47(8):2342-52. PubMed ID: 25019657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Study of Tunable Photonic Nanojets Generated by Biocompatible Hydrogel Core-Shell Microspheres for Surface-Enhanced Raman Scattering Applications.
    Wang YJ; Dai CA; Li JH
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical surface profiling of orb-web spider capture silks.
    Kane DM; Joyce AM; Staib GR; Herberstein ME
    Bioinspir Biomim; 2010 Sep; 5(3):036004. PubMed ID: 20710068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.
    Lazaris A; Arcidiacono S; Huang Y; Zhou JF; Duguay F; Chretien N; Welsh EA; Soares JW; Karatzas CN
    Science; 2002 Jan; 295(5554):472-6. PubMed ID: 11799236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein composition correlates with the mechanical properties of spider ( Argiope trifasciata ) dragline silk.
    Marhabaie M; Leeper TC; Blackledge TA
    Biomacromolecules; 2014 Jan; 15(1):20-9. PubMed ID: 24313814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diverse formulas for spider dragline fibers demonstrated by molecular and mechanical characterization of spitting spider silk.
    Correa-Garhwal SM; Garb JE
    Biomacromolecules; 2014 Dec; 15(12):4598-605. PubMed ID: 25340514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twin photonic nanojets generated from coherent illumination of microscale sphere and cylinder.
    Poteet A; Zhang XA; Nagai H; Chang CH
    Nanotechnology; 2018 Feb; 29(7):075204. PubMed ID: 29263293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental verification of twin photonic nanojets from a dielectric microcylinder.
    Liu CY; Yeh MJ
    Opt Lett; 2019 Jul; 44(13):3262-3265. PubMed ID: 31259936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman spectroscopy.
    Sirichaisit J; Brookes VL; Young RJ; Vollrath F
    Biomacromolecules; 2003; 4(2):387-94. PubMed ID: 12625736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Processing conditions for the formation of spider silk microspheres.
    Lammel A; Schwab M; Slotta U; Winter G; Scheibel T
    ChemSusChem; 2008; 1(5):413-6. PubMed ID: 18702135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultralong photonic nanojet formed by a two-layer dielectric microsphere.
    Shen Y; Wang LV; Shen JT
    Opt Lett; 2014 Jul; 39(14):4120-3. PubMed ID: 25121666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spider silk: understanding the structure-function relationship of a natural fiber.
    Humenik M; Scheibel T; Smith A
    Prog Mol Biol Transl Sci; 2011; 103():131-85. PubMed ID: 21999996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets.
    Ruiz CM; Simpson JJ
    Opt Express; 2010 Aug; 18(16):16805-12. PubMed ID: 20721072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensing surface morphology of biofibers by decorating spider silk and cellulosic filaments with nematic microdroplets.
    Aguirre LE; de Oliveira A; Seč D; Čopar S; Almeida PL; Ravnik M; Godinho MH; Žumer S
    Proc Natl Acad Sci U S A; 2016 Feb; 113(5):1174-9. PubMed ID: 26768844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An experimental confirmation of thermal transitions in native and regenerated spider silks.
    Torres FG; Troncoso OP; Torres C; Cabrejos W
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1432-7. PubMed ID: 23827592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directional water collection on wetted spider silk.
    Zheng Y; Bai H; Huang Z; Tian X; Nie FQ; Zhao Y; Zhai J; Jiang L
    Nature; 2010 Feb; 463(7281):640-3. PubMed ID: 20130646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plastic material investment in load-bearing silk attachments in spiders.
    Wolff JO; Jones B; Herberstein ME
    Zoology (Jena); 2018 Dec; 131():45-47. PubMed ID: 29807866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of supercontraction in spider silk: structure-function relationship from tarantulas to orb-weavers.
    Boutry C; Blackledge TA
    J Exp Biol; 2010 Oct; 213(Pt 20):3505-14. PubMed ID: 20889831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.