BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 30702847)

  • 21. Facile Synthesis of a "Two-in-One" Sulfur Host Featuring Metallic-Cobalt-Embedded N-Doped Carbon Nanotubes for Efficient Lithium-Sulfur Batteries.
    Shao AH; Zhang Z; Xiong DG; Yu J; Cai JX; Yang ZY
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5968-5978. PubMed ID: 31927941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigating the Influence of Diverse Functionalized Carbon Nanotubes as Conductive Fibers on Paper-Based Sulfur Cathodes in Lithium-Sulfur Batteries.
    Ren X; Wu H; Xiao Y; Wu H; Wang H; Li H; Guo Y; Xu P; Yang B; Xiong C
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium-sulfur batteries.
    Zhao Q; Zhu Q; Miao J; Zhang P; Xu B
    Nanoscale; 2019 Apr; 11(17):8442-8448. PubMed ID: 30985850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient Activation of High-Loading Sulfur by Small CNTs Confined Inside a Large CNT for High-Capacity and High-Rate Lithium-Sulfur Batteries.
    Jin F; Xiao S; Lu L; Wang Y
    Nano Lett; 2016 Jan; 16(1):440-7. PubMed ID: 26675744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium.
    Chang J; Shang J; Sun Y; Ono LK; Wang D; Ma Z; Huang Q; Chen D; Liu G; Cui Y; Qi Y; Zheng Z
    Nat Commun; 2018 Oct; 9(1):4480. PubMed ID: 30367063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reduced graphene oxide coated porous carbon-sulfur nanofiber as a flexible paper electrode for lithium-sulfur batteries.
    Chu RX; Lin J; Wu CQ; Zheng J; Chen YL; Zhang J; Han RH; Zhang Y; Guo H
    Nanoscale; 2017 Jul; 9(26):9129-9138. PubMed ID: 28644506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Designing Lithium-Sulfur Batteries with High-Loading Cathodes at a Lean Electrolyte Condition.
    Chung SH; Manthiram A
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43749-43759. PubMed ID: 30479126
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium-Sulfur Batteries.
    Ma L; Yuan H; Zhang W; Zhu G; Wang Y; Hu Y; Zhao P; Chen R; Chen T; Liu J; Hu Z; Jin Z
    Nano Lett; 2017 Dec; 17(12):7839-7846. PubMed ID: 29182880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Freestanding, Dissolution- and Diffusion-Limiting, Flexible Sulfur Electrode Enables High Specific Capacity at High Mass Loading.
    Guo Q; Wang C; Shang J; Yang Y; Xie C; Luo Y; Rong M; Pei Y; Gao Y; Zheng Z
    Adv Mater; 2024 Jun; 36(25):e2400041. PubMed ID: 38469733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stabilizing Lithium-Sulfur Batteries through Control of Sulfur Aggregation and Polysulfide Dissolution.
    Liu Q; Zhang J; He SA; Zou R; Xu C; Cui Z; Huang X; Guan G; Zhang W; Xu K; Hu J
    Small; 2018 May; 14(20):e1703816. PubMed ID: 29665267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Highly Conductive MOF of Graphene Analogue Ni
    Cai D; Lu M; Li L; Cao J; Chen D; Tu H; Li J; Han W
    Small; 2019 Oct; 15(44):e1902605. PubMed ID: 31518060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-Templated Formation of Interlaced Carbon Nanotubes Threaded Hollow Co
    Chen T; Zhang Z; Cheng B; Chen R; Hu Y; Ma L; Zhu G; Liu J; Jin Z
    J Am Chem Soc; 2017 Sep; 139(36):12710-12715. PubMed ID: 28837329
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomimetic Root-like TiN/C@S Nanofiber as a Freestanding Cathode with High Sulfur Loading for Lithium-Sulfur Batteries.
    Liao Y; Xiang J; Yuan L; Hao Z; Gu J; Chen X; Yuan K; Kalambate PK; Huang Y
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):37955-37962. PubMed ID: 30360064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures.
    Li Y; Fu KK; Chen C; Luo W; Gao T; Xu S; Dai J; Pastel G; Wang Y; Liu B; Song J; Chen Y; Yang C; Hu L
    ACS Nano; 2017 May; 11(5):4801-4807. PubMed ID: 28485923
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synergistic Design of Cathode Region for the High-Energy-Density Li-S Batteries.
    Fan CY; Liu SY; Li HH; Wang HF; Wang HC; Wu XL; Sun HZ; Zhang JP
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28689-28699. PubMed ID: 27731632
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Freestanding Double-Layer MoO
    Chen D; Yue XY; Li XL; Bao J; Qiu QQ; Wu XJ; Zhang X; Zhou YN
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2354-2361. PubMed ID: 31850733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective Reduction of Multivariate Metal-Organic Frameworks for Advanced Electrocatalytic Cathodes in High Areal Capacity and Long-Life Lithium-Sulfur Batteries.
    Kaid MM; Shehab MK; Fang H; Ahmed AI; El-Hakam SA; Ibrahim AA; Jena P; El-Kaderi HM
    ACS Appl Mater Interfaces; 2024 Jan; 16(2):2283-2295. PubMed ID: 38166008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Facile Bottom-Up Approach to Construct Hybrid Flexible Cathode Scaffold for High-Performance Lithium-Sulfur Batteries.
    Ghosh A; Manjunatha R; Kumar R; Mitra S
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33775-33785. PubMed ID: 27960357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monoclinic ZIF-8 Nanosheet-Derived 2D Carbon Nanosheets as Sulfur Immobilizer for High-Performance Lithium Sulfur Batteries.
    Jiang Y; Liu H; Tan X; Guo L; Zhang J; Liu S; Guo Y; Zhang J; Wang H; Chu W
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25239-25249. PubMed ID: 28686010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.