These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

764 related articles for article (PubMed ID: 30702859)

  • 21. Insight into the Formation and Stability of Solid Electrolyte Interphase for Nanostructured Silicon-Based Anode Electrodes Used in Li-Ion Batteries.
    Ezzedine M; Zamfir MR; Jardali F; Leveau L; Caristan E; Ersen O; Cojocaru CS; Florea I
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24734-24746. PubMed ID: 34019366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unravelling the Interface Layer Formation and Gas Evolution/Suppression on a TiNb
    Wu X; Lou S; Cheng X; Lin C; Gao J; Ma Y; Zuo P; Du C; Gao Y; Yin G
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27056-27062. PubMed ID: 30035529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Performance Organic Lithium Batteries with an Ether-Based Electrolyte and 9,10-Anthraquinone (AQ)/CMK-3 Cathode.
    Zhang K; Guo C; Zhao Q; Niu Z; Chen J
    Adv Sci (Weinh); 2015 May; 2(5):1500018. PubMed ID: 27980937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reliable Organic Carbonyl Electrode Materials Enabled by Electrolyte and Interfacial Chemistry Regulation.
    Lu Y; Ni Y; Chen J
    Acc Chem Res; 2024 Feb; 57(3):375-385. PubMed ID: 38240205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical Lithiation/Delithiation of ZnO in 3D-Structured Electrodes: Elucidating the Mechanism and the Solid Electrolyte Interphase Formation.
    Kreissl JJA; Petit J; Oppermann R; Cop P; Gerber T; Joos M; Abert M; Tübke J; Miyazaki K; Abe T; Schröder D
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35625-35638. PubMed ID: 34309361
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrolyte Design Enabling Stable Solid Electrolyte Interface for High-Performance Silicon/Carbon Anodes.
    Wen Z; Wu F; Li L; Chen N; Luo G; Du J; Zhao L; Ma Y; Li Y; Chen R
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):38807-38814. PubMed ID: 35981783
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy.
    Unocic RR; Sun XG; Sacci RL; Adamczyk LA; Alsem DH; Dai S; Dudney NJ; More KL
    Microsc Microanal; 2014 Aug; 20(4):1029-37. PubMed ID: 24994021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resolving nanostructure and chemistry of solid-electrolyte interphase on lithium anodes by depth-sensitive plasmon-enhanced Raman spectroscopy.
    Gu Y; You EM; Lin JD; Wang JH; Luo SH; Zhou RY; Zhang CJ; Yao JL; Li HY; Li G; Wang WW; Qiao Y; Yan JW; Wu DY; Liu GK; Zhang L; Li JF; Xu R; Tian ZQ; Cui Y; Mao BW
    Nat Commun; 2023 Jun; 14(1):3536. PubMed ID: 37321993
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MOF-Derived ZnSe/N-Doped Carbon Composites for Lithium-Ion Batteries with Enhanced Capacity and Cycling Life.
    Liu H; Li Z; Zhang L; Ruan H; Hu R
    Nanoscale Res Lett; 2019 Jul; 14(1):237. PubMed ID: 31309354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of the Electric Double Layer (EDL) in Multicomponent Electrolyte Reduction and Solid Electrolyte Interphase (SEI) Formation in Lithium Batteries.
    Wu Q; McDowell MT; Qi Y
    J Am Chem Soc; 2023 Feb; 145(4):2473-2484. PubMed ID: 36689617
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In Situ Observation of Interface Evolution on a Graphite Anode by Scanning Electrochemical Microscopy.
    Zeng X; Liu D; Wang S; Liu S; Cai X; Zhang L; Zhao R; Li B; Kang F
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37047-37053. PubMed ID: 32814414
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Core-shell ZnO@C:N hybrids derived from MOFs as long-cycling anodes for lithium ion batteries.
    Guo Y; Wang Z; Lu X; Lu J; Rabia K; Chen H; Hu R; Tang H; Zhang Q; Li Z
    Chem Commun (Camb); 2020 Feb; 56(13):1980-1983. PubMed ID: 31960835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An advanced MoS2 /carbon anode for high-performance sodium-ion batteries.
    Wang J; Luo C; Gao T; Langrock A; Mignerey AC; Wang C
    Small; 2015 Jan; 11(4):473-81. PubMed ID: 25256131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries.
    Ju J; Wang Y; Chen B; Ma J; Dong S; Chai J; Qu H; Cui L; Wu X; Cui G
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13588-13597. PubMed ID: 29620848
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibiting Solvent Co-Intercalation in a Graphite Anode by a Localized High-Concentration Electrolyte in Fast-Charging Batteries.
    Jiang LL; Yan C; Yao YX; Cai W; Huang JQ; Zhang Q
    Angew Chem Int Ed Engl; 2021 Feb; 60(7):3402-3406. PubMed ID: 33107707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries.
    Zhang Y; Du N; Yang D
    Nanoscale; 2019 Nov; 11(41):19086-19104. PubMed ID: 31538999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potassium Fluoride and Carbonate Lead to Cell Failure in Potassium-Ion Batteries.
    Ells AW; May R; Marbella LE
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53841-53849. PubMed ID: 34735122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Locally Concentrated LiPF
    Hagos TT; Thirumalraj B; Huang CJ; Abrha LH; Hagos TM; Berhe GB; Bezabh HK; Cherng J; Chiu SF; Su WN; Hwang BJ
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):9955-9963. PubMed ID: 30789250
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Stable Solid Electrolyte Interphase for Magnesium Metal Anode Evolved from a Bulky Anion Lithium Salt.
    Tang K; Du A; Dong S; Cui Z; Liu X; Lu C; Zhao J; Zhou X; Cui G
    Adv Mater; 2020 Feb; 32(6):e1904987. PubMed ID: 31850607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stable Cycle Performance of a Phosphorus Negative Electrode in Lithium-Ion Batteries Derived from Ionic Liquid Electrolytes.
    Kaushik S; Matsumoto K; Hagiwara R
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):10891-10901. PubMed ID: 33630586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.