These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30702864)

  • 1. Comprehensive and Empirical Evaluation of Machine Learning Algorithms for Small Molecule LC Retention Time Prediction.
    Bouwmeester R; Martens L; Degroeve S
    Anal Chem; 2019 Mar; 91(5):3694-3703. PubMed ID: 30702864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative structure retention relationship (QSRR) modelling for Analytes' retention prediction in LC-HRMS by applying different Machine Learning algorithms and evaluating their performance.
    Liapikos T; Zisi C; Kodra D; Kademoglou K; Diamantidou D; Begou O; Pappa-Louisi A; Theodoridis G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Feb; 1191():123132. PubMed ID: 35093854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation and application of machine learning-based retention time prediction for suspect screening of pesticides and pesticide transformation products in LC-HRMS.
    Feng C; Xu Q; Qiu X; Jin Y; Ji J; Lin Y; Le S; She J; Lu D; Wang G
    Chemosphere; 2021 May; 271():129447. PubMed ID: 33476874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance comparison of nonlinear and linear regression algorithms coupled with different attribute selection methods for quantitative structure - retention relationships modelling in micellar liquid chromatography.
    Krmar J; Vukićević M; Kovačević A; Protić A; Zečević M; Otašević B
    J Chromatogr A; 2020 Jul; 1623():461146. PubMed ID: 32505269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Q-learning for the selection of optimal isocratic scouting runs in liquid chromatography.
    Kensert A; Collaerts G; Efthymiadis K; Desmet G; Cabooter D
    J Chromatogr A; 2021 Feb; 1638():461900. PubMed ID: 33485027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of pesticide retention time in reversed-phase liquid chromatography using quantitative-structure retention relationship models: A comparative study of seven molecular descriptors datasets.
    Parinet J
    Chemosphere; 2021 Jul; 275():130036. PubMed ID: 33676277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust algorithm for alignment of liquid chromatography-mass spectrometry analyses in an accurate mass and time tag data analysis pipeline.
    Jaitly N; Monroe ME; Petyuk VA; Clauss TR; Adkins JN; Smith RD
    Anal Chem; 2006 Nov; 78(21):7397-409. PubMed ID: 17073405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graph Convolutional Networks for Improved Prediction and Interpretability of Chromatographic Retention Data.
    Kensert A; Bouwmeester R; Efthymiadis K; Van Broeck P; Desmet G; Cabooter D
    Anal Chem; 2021 Nov; 93(47):15633-15641. PubMed ID: 34780168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification.
    Mendez KM; Reinke SN; Broadhurst DI
    Metabolomics; 2019 Nov; 15(12):150. PubMed ID: 31728648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of anaerobic digestion performance and identification of critical operational parameters using machine learning algorithms.
    Wang L; Long F; Liao W; Liu H
    Bioresour Technol; 2020 Feb; 298():122495. PubMed ID: 31830658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The METLIN small molecule dataset for machine learning-based retention time prediction.
    Domingo-Almenara X; Guijas C; Billings E; Montenegro-Burke JR; Uritboonthai W; Aisporna AE; Chen E; Benton HP; Siuzdak G
    Nat Commun; 2019 Dec; 10(1):5811. PubMed ID: 31862874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features.
    Cui Z; Gong G
    Neuroimage; 2018 Sep; 178():622-637. PubMed ID: 29870817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep graph convolutional network for small-molecule retention time prediction.
    Kang Q; Fang P; Zhang S; Qiu H; Lan Z
    J Chromatogr A; 2023 Nov; 1711():464439. PubMed ID: 37865024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Neural Network Pretrained by Weighted Autoencoders and Transfer Learning for Retention Time Prediction of Small Molecules.
    Ju R; Liu X; Zheng F; Lu X; Xu G; Lin X
    Anal Chem; 2021 Nov; 93(47):15651-15658. PubMed ID: 34780148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of retention in hydrophilic interaction liquid chromatography using solute molecular descriptors based on chemical structures.
    Taraji M; Haddad PR; Amos RI; Talebi M; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Feb; 1486():59-67. PubMed ID: 28049585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Anti-inflammatory Plants and Discovery of Their Biomarkers by Machine Learning Algorithms and Metabolomic Studies.
    Chagas-Paula DA; Oliveira TB; Zhang T; Edrada-Ebel R; Da Costa FB
    Planta Med; 2015 Apr; 81(6):450-8. PubMed ID: 25615275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning for retention time prediction in reversed-phase liquid chromatography.
    Fedorova ES; Matyushin DD; Plyushchenko IV; Stavrianidi AN; Buryak AK
    J Chromatogr A; 2022 Feb; 1664():462792. PubMed ID: 34999303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Employing fingerprinting of medicinal plants by means of LC-MS and machine learning for species identification task.
    Kharyuk P; Nazarenko D; Oseledets I; Rodin I; Shpigun O; Tsitsilin A; Lavrentyev M
    Sci Rep; 2018 Nov; 8(1):17053. PubMed ID: 30451976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of LC predicted retention times to extend metabolites identification with SWATH data acquisition.
    Bruderer T; Varesio E; Hopfgartner G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Dec; 1071():3-10. PubMed ID: 28780068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing the influence of geometry-induced gradient deformation in liquid chromatographic retention modelling.
    Bos TS; Niezen LE; den Uijl MJ; Molenaar SRA; Lege S; Schoenmakers PJ; Somsen GW; Pirok BWJ
    J Chromatogr A; 2021 Jan; 1635():461714. PubMed ID: 33264699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.