BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30702869)

  • 1. Peptide-Aptamer Coassembly Nanocarrier for Cancer Therapy.
    Ma Y; Li W; Zhou Z; Qin X; Wang D; Gao Y; Yu Z; Yin F; Li Z
    Bioconjug Chem; 2019 Mar; 30(3):536-540. PubMed ID: 30702869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aptamer-functionalized hybrid nanoparticle for the treatment of breast cancer.
    Powell D; Chandra S; Dodson K; Shaheen F; Wiltz K; Ireland S; Syed M; Dash S; Wiese T; Mandal T; Kundu A
    Eur J Pharm Biopharm; 2017 May; 114():108-118. PubMed ID: 28131717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional Nanodelivery Platform for Maximizing Nucleic Acids Combination Therapy.
    Lee SK; Law B; Tung CH
    Methods Mol Biol; 2020; 2115():79-90. PubMed ID: 32006395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. siRNA-aptamer chimeras on nanoparticles: preserving targeting functionality for effective gene silencing.
    Bagalkot V; Gao X
    ACS Nano; 2011 Oct; 5(10):8131-9. PubMed ID: 21936502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multivalent comb-type aptamer-siRNA conjugates for efficient and selective intracellular delivery.
    Yoo H; Jung H; Kim SA; Mok H
    Chem Commun (Camb); 2014 Jun; 50(51):6765-7. PubMed ID: 24830507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of In Vivo siRNA Delivery in Cancer Mouse Models.
    Hatakeyama H; Wu SY; Mangala LS; Lopez-Berestein G; Sood AK
    Methods Mol Biol; 2016; 1402():189-197. PubMed ID: 26721492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of novel albumin-sericin nanoparticles as siRNA delivery vehicle for laryngeal cancer treatment.
    Yalcin E; Kara G; Celik E; Pinarli FA; Saylam G; Sucularli C; Ozturk S; Yilmaz E; Bayir O; Korkmaz MH; Denkbas EB
    Prep Biochem Biotechnol; 2019; 49(7):659-670. PubMed ID: 31066619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient systemic delivery of siRNA by using high-density lipoprotein-mimicking peptide lipid nanoparticles.
    Lin Q; Chen J; Jin H; Ng KK; Yang M; Cao W; Ding L; Zhang Z; Zheng G
    Nanomedicine (Lond); 2012 Dec; 7(12):1813-25. PubMed ID: 22830501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-pH-Responsive and Tumor-Penetrating Nanoplatform for Targeted siRNA Delivery with Robust Anti-Cancer Efficacy.
    Xu X; Wu J; Liu Y; Yu M; Zhao L; Zhu X; Bhasin S; Li Q; Ha E; Shi J; Farokhzad OC
    Angew Chem Int Ed Engl; 2016 Jun; 55(25):7091-7094. PubMed ID: 27140428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smart ligand: aptamer-mediated targeted delivery of chemotherapeutic drugs and siRNA for cancer therapy.
    Li X; Zhao Q; Qiu L
    J Control Release; 2013 Oct; 171(2):152-62. PubMed ID: 23777885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zwitterionic Nanocarrier Surface Chemistry Improves siRNA Tumor Delivery and Silencing Activity Relative to Polyethylene Glycol.
    Jackson MA; Werfel TA; Curvino EJ; Yu F; Kavanaugh TE; Sarett SM; Dockery MD; Kilchrist KV; Jackson AN; Giorgio TD; Duvall CL
    ACS Nano; 2017 Jun; 11(6):5680-5696. PubMed ID: 28548843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systemic Delivery of Anti-miRNA for Suppression of Triple Negative Breast Cancer Utilizing RNA Nanotechnology.
    Shu D; Li H; Shu Y; Xiong G; Carson WE; Haque F; Xu R; Guo P
    ACS Nano; 2015 Oct; 9(10):9731-40. PubMed ID: 26387848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of aptamers in cancer research: an up-to-date review.
    Hu M; Zhang K
    Future Oncol; 2013 Mar; 9(3):369-76. PubMed ID: 23469972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for siRNA navigation to desired cells.
    Sioud M
    Methods Mol Biol; 2015; 1218():201-16. PubMed ID: 25319653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aptamer delivery of siRNA, radiopharmaceutics and chemotherapy agents in cancer.
    de Almeida CEB; Alves LN; Rocha HF; Cabral-Neto JB; Missailidis S
    Int J Pharm; 2017 Jun; 525(2):334-342. PubMed ID: 28373101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Budding Alliance of Nanotechnology in RNA Interference Therapeutics.
    Kumawat A; Dapse P; Kumar N; Mishra DK; Maheshwari R; Bhattacharya P; Tekade RK
    Curr Pharm Des; 2018; 24(23):2632-2643. PubMed ID: 30084328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound-mediated nanobubble destruction (UMND) facilitates the delivery of A10-3.2 aptamer targeted and siRNA-loaded cationic nanobubbles for therapy of prostate cancer.
    Wu M; Zhao H; Guo L; Wang Y; Song J; Zhao X; Li C; Hao L; Wang D; Tang J
    Drug Deliv; 2018 Nov; 25(1):226-240. PubMed ID: 29313393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle-siRNA: a potential strategy for ovarian cancer therapy?
    Aghamiri S; Mehrjardi KF; Shabani S; Keshavarz-Fathi M; Kargar S; Rezaei N
    Nanomedicine (Lond); 2019 Aug; 14(15):2083-2100. PubMed ID: 31368405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-Delivery of Doxorubicin and Survivin shRNA-Expressing Plasmid Via Microenvironment-Responsive Dendritic Mesoporous Silica Nanoparticles for Synergistic Cancer Therapy.
    Li Z; Zhang L; Tang C; Yin C
    Pharm Res; 2017 Dec; 34(12):2829-2841. PubMed ID: 28948461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression.
    Pi F; Binzel DW; Lee TJ; Li Z; Sun M; Rychahou P; Li H; Haque F; Wang S; Croce CM; Guo B; Evers BM; Guo P
    Nat Nanotechnol; 2018 Jan; 13(1):82-89. PubMed ID: 29230043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.