These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30703010)

  • 1. Training Faster by Separating Modes of Variation in Batch-Normalized Models.
    Kalayeh MM; Shah M
    IEEE Trans Pattern Anal Mach Intell; 2020 Jun; 42(6):1483-1500. PubMed ID: 30703010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. L1 -Norm Batch Normalization for Efficient Training of Deep Neural Networks.
    Wu S; Li G; Deng L; Liu L; Wu D; Xie Y; Shi L
    IEEE Trans Neural Netw Learn Syst; 2019 Jul; 30(7):2043-2051. PubMed ID: 30418924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adversarial symmetric GANs: Bridging adversarial samples and adversarial networks.
    Liu F; Xu M; Li G; Pei J; Shi L; Zhao R
    Neural Netw; 2021 Jan; 133():148-156. PubMed ID: 33217683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Convolutional Generative Adversarial Network (dcGAN) Models for Screening and Design of Small Molecules Targeting Cannabinoid Receptors.
    Bian Y; Wang J; Jun JJ; Xie XQ
    Mol Pharm; 2019 Nov; 16(11):4451-4460. PubMed ID: 31589460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep FisherNet for Image Classification.
    Tang P; Wang X; Shi B; Bai X; Liu W; Tu Z
    IEEE Trans Neural Netw Learn Syst; 2019 Jul; 30(7):2244-2250. PubMed ID: 30403638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination of unsound wheat kernels based on deep convolutional generative adversarial network and near-infrared hyperspectral imaging technology.
    Li H; Zhang L; Sun H; Rao Z; Ji H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar; 268():120722. PubMed ID: 34902690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diminishing Batch Normalization.
    Ma Y; Klabjan D
    IEEE Trans Neural Netw Learn Syst; 2024 May; 35(5):6544-6557. PubMed ID: 36260586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective and Efficient Batch Normalization Using a Few Uncorrelated Data for Statistics Estimation.
    Chen Z; Deng L; Li G; Sun J; Hu X; Liang L; Ding Y; Xie Y
    IEEE Trans Neural Netw Learn Syst; 2021 Jan; 32(1):348-362. PubMed ID: 32217486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Multi-Agent Generative Adversarial Nets with Variational Latent Representation.
    Zhao H; Li T; Xiao Y; Wang Y
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AlphaGAN: Fully Differentiable Architecture Search for Generative Adversarial Networks.
    Tian Y; Shen L; Shen L; Su G; Li Z; Liu W
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):6752-6766. PubMed ID: 34310290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification.
    Rueckauer B; Lungu IA; Hu Y; Pfeiffer M; Liu SC
    Front Neurosci; 2017; 11():682. PubMed ID: 29375284
    [No Abstract]   [Full Text] [Related]  

  • 12. Accelerating deep learning with memcomputing.
    Manukian H; Traversa FL; Di Ventra M
    Neural Netw; 2019 Feb; 110():1-7. PubMed ID: 30458316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel Connected Generative Adversarial Network with Quadratic Operation for SAR Image Generation and Application for Classification.
    He C; Xiong D; Zhang Q; Liao M
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On Urinary Bladder Cancer Diagnosis: Utilization of Deep Convolutional Generative Adversarial Networks for Data Augmentation.
    Lorencin I; Baressi Šegota S; Anđelić N; Mrzljak V; Ćabov T; Španjol J; Car Z
    Biology (Basel); 2021 Feb; 10(3):. PubMed ID: 33652727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Re-Thinking the Effectiveness of Batch Normalization and Beyond.
    Peng H; Yu Y; Yu S
    IEEE Trans Pattern Anal Mach Intell; 2024 Jan; 46(1):465-478. PubMed ID: 37747867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approximate Fisher Information Matrix to Characterize the Training of Deep Neural Networks.
    Liao Z; Drummond T; Reid I; Carneiro G
    IEEE Trans Pattern Anal Mach Intell; 2020 Jan; 42(1):15-26. PubMed ID: 30334782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. STAGAN: An approach for improve the stability of molecular graph generation based on generative adversarial networks.
    Zou J; Yu J; Hu P; Zhao L; Shi S
    Comput Biol Med; 2023 Dec; 167():107691. PubMed ID: 37976819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compositional Model Based Fisher Vector Coding for Image Classification.
    Liu L; Wang P; Shen C; Wang L; Hengel AVD; Wang C; Shen HT
    IEEE Trans Pattern Anal Mach Intell; 2017 Dec; 39(12):2335-2348. PubMed ID: 28092518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On Data Augmentation for GAN Training.
    Tran NT; Tran VH; Nguyen NB; Nguyen TK; Cheung NM
    IEEE Trans Image Process; 2021; 30():1882-1897. PubMed ID: 33428571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Robust Initialization of Residual Blocks for Effective ResNet Training Without Batch Normalization.
    Civitelli E; Sortino A; Lapucci M; Bagattini F; Galvan G
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; PP():. PubMed ID: 37889824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.