BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 30703050)

  • 1. Performance Analysis of Gyroscope and Accelerometer Sensors for Seismocardiography-Based Wearable Pre-Ejection Period Estimation.
    Shandhi MMH; Semiz B; Hersek S; Goller N; Ayazi F; Inan OT
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2365-2374. PubMed ID: 30703050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal Pre-Ejection Period Estimation Using Seismocardiography: Quantifying the Effects of Sensor Placement and Regression Algorithms.
    Ashouri H; Hersek S; Inan OT
    IEEE Sens J; 2018 Feb; 18(4):1665-1674. PubMed ID: 29867294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerometer body sensor network improves systolic time interval assessment with wearable ballistocardiography.
    Wiens AD; Inan OT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1833-6. PubMed ID: 26736637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Globalized Model for Mapping Wearable Seismocardiogram Signals to Whole-Body Ballistocardiogram Signals Based on Deep Learning.
    Hersek S; Semiz B; Shandhi MMH; Orlandic L; Inan OT
    IEEE J Biomed Health Inform; 2020 May; 24(5):1296-1309. PubMed ID: 31369391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wearable seismocardiography: towards a beat-by-beat assessment of cardiac mechanics in ambulant subjects.
    Di Rienzo M; Vaini E; Castiglioni P; Merati G; Meriggi P; Parati G; Faini A; Rizzo F
    Auton Neurosci; 2013 Nov; 178(1-2):50-9. PubMed ID: 23664242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Independent Component Analysis Approach to Motion Noise Cancelation of Cardio-Mechanical Signals.
    Yang C; Tavassolian N
    IEEE Trans Biomed Eng; 2019 Mar; 66(3):784-793. PubMed ID: 30028685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracting respiratory information from seismocardiogram signals acquired on the chest using a miniature accelerometer.
    Pandia K; Inan OT; Kovacs GT; Giovangrandi L
    Physiol Meas; 2012 Oct; 33(10):1643-60. PubMed ID: 22986375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A frequency domain analysis of respiratory variations in the seismocardiogram signal.
    Pandia K; Inan OT; Kovacs GT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6881-4. PubMed ID: 24111326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Enhanced Method to Estimate Heart Rate from Seismocardiography via Ensemble Averaging of Body Movements at Six Degrees of Freedom.
    Lee H; Lee H; Whang M
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ECG-Free Heartbeat Detection in Seismocardiography and Gyrocardiography Signals Provides Acceptable Heart Rate Variability Indices in Healthy and Pathological Subjects.
    Parlato S; Centracchio J; Esposito D; Bifulco P; Andreozzi E
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of Beat-to-Beat Interval and Systolic Time Intervals Using Phono- and Seismocardiograms.
    Ahmaniemi T; Rajala S; Lindholm H
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5650-5656. PubMed ID: 31947135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait regularity assessed by wearable sensors: Comparison between accelerometer and gyroscope data for different sensor locations and walking speeds in healthy subjects.
    Scalera GM; Ferrarin M; Rabuffetti M
    J Biomech; 2020 Dec; 113():110115. PubMed ID: 33221581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between Chest-Worn Accelerometer and Gyroscope Performance for Heart Rate and Respiratory Rate Monitoring.
    Romano C; Schena E; Formica D; Massaroni C
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Detection of Seismocardiogram Sensor Misplacement for Robust Pre-Ejection Period Estimation in Unsupervised Settings.
    Ashouri H; Inan OT
    IEEE Sens J; 2017 Jun; 17(12):3805-3813. PubMed ID: 29085256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement artefact removal from NIRS signal using multi-channel IMU data.
    Siddiquee MR; Marquez JS; Atri R; Ramon R; Perry Mayrand R; Bai O
    Biomed Eng Online; 2018 Sep; 17(1):120. PubMed ID: 30200984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison between Accelerometer and Gyroscope in Predicting Level-Ground Running Kinematics by Treadmill Running Kinematics Using a Single Wearable Sensor.
    Chow DHK; Tremblay L; Lam CY; Yeung AWY; Cheng WHW; Tse PTW
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive comparison of simple step counting techniques using wrist- and ankle-mounted accelerometer and gyroscope signals.
    Rhudy MB; Mahoney JM
    J Med Eng Technol; 2018 Apr; 42(3):236-243. PubMed ID: 29846134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heart Rate Estimated from Body Movements at Six Degrees of Freedom by Convolutional Neural Networks.
    Lee H; Whang M
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29724006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial and time-of-arrival ranging sensor fusion.
    Vasilyev P; Pearson S; El-Gohary M; Aboy M; McNames J
    Gait Posture; 2017 May; 54():1-7. PubMed ID: 28242567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the estimation of cardiac time intervals using gyrocardiography.
    Dehkordi P; Tavakolian K; Tadi MJ; Zakeri V; Khosrow-Khavar F
    Physiol Meas; 2020 Jun; 41(5):055004. PubMed ID: 32268315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.