These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 30703388)
41. The Ancient Phosphatidylinositol 3-Kinase Signaling System Is a Master Regulator of Energy and Carbon Metabolism in Algae. Ramanan R; Tran QG; Cho DH; Jung JE; Kim BH; Shin SY; Choi SH; Liu KH; Kim DS; Lee SJ; Crespo JL; Lee HG; Oh HM; Kim HS Plant Physiol; 2018 Jul; 177(3):1050-1065. PubMed ID: 29769325 [TBL] [Abstract][Full Text] [Related]
42. Advances in algal lipid metabolism and their use to improve oil content. Kong F; Blot C; Liu K; Kim M; Li-Beisson Y Curr Opin Biotechnol; 2024 Jun; 87():103130. PubMed ID: 38579630 [TBL] [Abstract][Full Text] [Related]
43. TAG, you're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Merchant SS; Kropat J; Liu B; Shaw J; Warakanont J Curr Opin Biotechnol; 2012 Jun; 23(3):352-63. PubMed ID: 22209109 [TBL] [Abstract][Full Text] [Related]
45. Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress. Levitan O; Dinamarca J; Zelzion E; Lun DS; Guerra LT; Kim MK; Kim J; Van Mooy BA; Bhattacharya D; Falkowski PG Proc Natl Acad Sci U S A; 2015 Jan; 112(2):412-7. PubMed ID: 25548193 [TBL] [Abstract][Full Text] [Related]
46. 3-Hydroxyisobutyryl-CoA hydrolase involved in isoleucine catabolism regulates triacylglycerol accumulation in Pan Y; Yang J; Gong Y; Li X; Hu H Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1728):. PubMed ID: 28717019 [TBL] [Abstract][Full Text] [Related]
47. The role of diatom glucose-6-phosphate dehydrogenase on lipogenic NADPH supply in green microalgae through plastidial oxidative pentose phosphate pathway. Xue J; Chen TT; Zheng JW; Balamurugan S; Cai JX; Liu YH; Yang WD; Liu JS; Li HY Appl Microbiol Biotechnol; 2018 Dec; 102(24):10803-10815. PubMed ID: 30349933 [TBL] [Abstract][Full Text] [Related]
48. Characterization of type 2 diacylglycerol acyltransferases in Chlamydomonas reinhardtii reveals their distinct substrate specificities and functions in triacylglycerol biosynthesis. Liu J; Han D; Yoon K; Hu Q; Li Y Plant J; 2016 Apr; 86(1):3-19. PubMed ID: 26919811 [TBL] [Abstract][Full Text] [Related]
49. Towards developing algal synthetic biology. Scaife MA; Smith AG Biochem Soc Trans; 2016 Jun; 44(3):716-22. PubMed ID: 27284033 [TBL] [Abstract][Full Text] [Related]
50. The enhanced biomass and lipid accumulation in Coccomyxa subellipsoidea with an integrated treatment strategy initiated by brewery effluent and phytohormones. Liu T; Luo F; Wang Z; Li Y World J Microbiol Biotechnol; 2018 Jan; 34(2):25. PubMed ID: 29330693 [TBL] [Abstract][Full Text] [Related]
51. A pivotal role of vacuolar H(+)-ATPase in regulation of lipid production in Phaeodactylum tricornutum. Zhang H; Zeng R; Chen D; Liu J Sci Rep; 2016 Aug; 6():31319. PubMed ID: 27499168 [TBL] [Abstract][Full Text] [Related]
52. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii. Gargouri M; Park JJ; Holguin FO; Kim MJ; Wang H; Deshpande RR; Shachar-Hill Y; Hicks LM; Gang DR J Exp Bot; 2015 Aug; 66(15):4551-66. PubMed ID: 26022256 [TBL] [Abstract][Full Text] [Related]
53. Innovations in improving lipid production: Algal chemical genetics. Wase N; Black P; DiRusso C Prog Lipid Res; 2018 Jul; 71():101-123. PubMed ID: 30017715 [TBL] [Abstract][Full Text] [Related]
54. Lipid and fatty acid composition of diatoms revisited: rapid wound-activated change of food quality parameters influences herbivorous copepod reproductive success. Wichard T; Gerecht A; Boersma M; Poulet SA; Wiltshire K; Pohnert G Chembiochem; 2007 Jul; 8(10):1146-53. PubMed ID: 17541989 [TBL] [Abstract][Full Text] [Related]
55. Expression and knockdown of the PEPC1 gene affect carbon flux in the biosynthesis of triacylglycerols by the green alga Chlamydomonas reinhardtii. Deng X; Cai J; Li Y; Fei X Biotechnol Lett; 2014 Nov; 36(11):2199-208. PubMed ID: 24966045 [TBL] [Abstract][Full Text] [Related]
56. Sources and resources: importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation. Fields MW; Hise A; Lohman EJ; Bell T; Gardner RD; Corredor L; Moll K; Peyton BM; Characklis GW; Gerlach R Appl Microbiol Biotechnol; 2014 Jun; 98(11):4805-16. PubMed ID: 24695829 [TBL] [Abstract][Full Text] [Related]
58. Optimization of light use efficiency for biofuel production in algae. Simionato D; Basso S; Giacometti GM; Morosinotto T Biophys Chem; 2013 Dec; 182():71-8. PubMed ID: 23876487 [TBL] [Abstract][Full Text] [Related]
59. Diatoms: a fossil fuel of the future. Levitan O; Dinamarca J; Hochman G; Falkowski PG Trends Biotechnol; 2014 Mar; 32(3):117-24. PubMed ID: 24529448 [TBL] [Abstract][Full Text] [Related]
60. Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching. Roach T; Miller R; Aigner S; Kranner I Ann Bot; 2015 Sep; 116(4):519-27. PubMed ID: 25878139 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]