These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30703421)

  • 21. Characterization of tobacco plants expressing a bacterial salicylate hydroxylase gene.
    Friedrich L; Vernooij B; Gaffney T; Morse A; Ryals J
    Plant Mol Biol; 1995 Dec; 29(5):959-68. PubMed ID: 8555459
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and Biochemical Analysis Reveals a Distinct Catalytic Site of Salicylate 5-Monooxygenase NagGH from Rieske Dioxygenases.
    Hou YJ; Guo Y; Li DF; Zhou NY
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33452034
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineered Bacterial Flavin-Dependent Monooxygenases for the Regiospecific Hydroxylation of Polycyclic Phenols.
    Herrmann S; Dippe M; Pecher P; Funke E; Pietzsch M; Wessjohann LA
    Chembiochem; 2022 Mar; 23(6):e202100480. PubMed ID: 34979058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the flavin monooxygenase involved in biosynthesis of the antimalarial FR-900098.
    Nguyen K; DeSieno MA; Bae B; Johannes TW; Cobb RE; Zhao H; Nair SK
    Org Biomol Chem; 2019 Feb; 17(6):1506-1518. PubMed ID: 30681110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Salicylate degradation by Pseudomonas putida strains not involving the "classical" nah2 operon].
    Sazonova OI; Izmalkova TIu; Kosheleva IA; Boronin AM
    Mikrobiologiia; 2008; 77(6):798-804. PubMed ID: 19137719
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Fe(II)/α-ketoglutarate-dependent taurine dioxygenases from Pseudomonas putida and Escherichia coli are tetramers.
    Knauer SH; Hartl-Spiegelhauer O; Schwarzinger S; Hänzelmann P; Dobbek H
    FEBS J; 2012 Mar; 279(5):816-31. PubMed ID: 22221834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overexpression, purification and characterization of a new salicylate hydroxylase from naphthalene-degrading Pseudomonas sp. strain ND6.
    Zhao H; Chen D; Li Y; Cai B
    Microbiol Res; 2005; 160(3):307-13. PubMed ID: 16035243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structure of p-nitrophenol 4-monooxygenase PnpA from Pseudomonas putida DLL-E4: The key enzyme involved in p-nitrophenol degradation.
    Chen Q; Huang Y; Duan Y; Li Z; Cui Z; Liu W
    Biochem Biophys Res Commun; 2018 Oct; 504(4):715-720. PubMed ID: 30217456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cloning of salicylate hydroxylase gene and catechol 2,3-dioxygenase gene and sequencing of an intergenic sequence between the two genes of Pseudomonas putida KF715.
    Lee J; Min KR; Kim YC; Kim CK; Lim JY; Yoon H; Min KH; Lee KS; Kim Y
    Biochem Biophys Res Commun; 1995 Jun; 211(2):382-8. PubMed ID: 7794247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intermediate and mechanism of hydroxylation of o-iodophenol by salicylate hydroxylase.
    Suzuki K; Gomi T; Itagaki E
    J Biochem; 1991 May; 109(5):791-7. PubMed ID: 1917904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Salicylate and catechol levels are maintained in nahG transgenic poplar.
    Morse AM; Tschaplinski TJ; Dervinis C; Pijut PM; Schmelz EA; Day W; Davis JM
    Phytochemistry; 2007 Aug; 68(15):2043-52. PubMed ID: 17599371
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of 8-substituted-FAD analogues to investigate the hydroxylation mechanism of the flavoprotein 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.
    Chaiyen P; Sucharitakul J; Svasti J; Entsch B; Massey V; Ballou DP
    Biochemistry; 2004 Apr; 43(13):3933-43. PubMed ID: 15049701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Apoenzyme of Pseudomonas cepacia salicylate hydroxylase. Preparation, fluorescence property, and nature of flavin binding.
    Wang LH; Tu SC; Lusk RC
    J Biol Chem; 1984 Jan; 259(2):1136-42. PubMed ID: 6693380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production, partial characterization, and potential diagnostic use of salicylate hydroxylase from Pseudomonas putida UUC-1.
    Banat IM; Marchant A; Nigam P; Gaston SJ; Kelly BA; Marchant R
    Enzyme Microb Technol; 1994 Aug; 16(8):665-70. PubMed ID: 7765077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of N-hydroxylation catalyzed by flavin-dependent monooxygenases.
    Badieyan S; Bach RD; Sobrado P
    J Org Chem; 2015 Feb; 80(4):2139-47. PubMed ID: 25633869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role and regulation of the ortho and meta pathways of catechol metabolism in pseudomonads metabolizing naphthalene and salicylate.
    Barnsley EA
    J Bacteriol; 1976 Feb; 125(2):404-8. PubMed ID: 1245462
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogen movements in the oxidative half-reaction of kynurenine 3-monooxygenase from Pseudomonas fluorescens reveal the mechanism of hydroxylation.
    Beaupre BA; Reabe KR; Roman JV; Moran GR
    Arch Biochem Biophys; 2020 Sep; 690():108474. PubMed ID: 32687799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic and spectroscopic characterization of 1-naphthol 2-hydroxylase from Pseudomonas sp. strain C5.
    Trivedi VD; Majhi P; Phale PS
    Appl Biochem Biotechnol; 2014 Apr; 172(8):3964-77. PubMed ID: 24599669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [scpA the new salicylate hydroxylase gene localized on salicylate/caprolactam degradation plasmids].
    Panov AV; Volkova OV; Puntus IF; Esikova TZ; Kosheleva IA; Boronin AM
    Mol Biol (Mosk); 2013; 47(1):116-23. PubMed ID: 23705500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of a lysine residue in the NADH-binding site of salicylate hydroxylase from Pseudomonas putida S-1.
    Suzuki K; Mizuguchi M; Gomi T; Itagaki E
    J Biochem; 1995 Mar; 117(3):579-85. PubMed ID: 7629025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.