These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 30703421)
41. The reaction kinetics of 3-hydroxybenzoate 6-hydroxylase from Rhodococcus jostii RHA1 provide an understanding of the para-hydroxylation enzyme catalytic cycle. Sucharitakul J; Tongsook C; Pakotiprapha D; van Berkel WJ; Chaiyen P J Biol Chem; 2013 Dec; 288(49):35210-21. PubMed ID: 24129570 [TBL] [Abstract][Full Text] [Related]
43. Tyr217 and His213 are important for substrate binding and hydroxylation of 3-hydroxybenzoate 6-hydroxylase from Rhodococcus jostii RHA1. Sucharitakul J; Medhanavyn D; Pakotiprapha D; van Berkel WJ; Chaiyen P FEBS J; 2016 Mar; 283(5):860-81. PubMed ID: 26709612 [TBL] [Abstract][Full Text] [Related]
44. Purification and characterization of salicylate 5-hydroxylase, a three-component monooxygenase from Ralstonia sp. strain U2. Fang T; Zhou NY Appl Microbiol Biotechnol; 2014 Jan; 98(2):671-9. PubMed ID: 23624660 [TBL] [Abstract][Full Text] [Related]
45. Quantitative structure/activity relationship for the rate of conversion of C4-substituted catechols by catechol-1,2-dioxygenase from Pseudomonas putida (arvilla) C1. Ridder L; Briganti F; Boersma MG; Boeren S; Vis EH; Scozzafava A; Veeger C; Rietjens IM Eur J Biochem; 1998 Oct; 257(1):92-100. PubMed ID: 9799107 [TBL] [Abstract][Full Text] [Related]
46. A flavin-dependent monooxygenase from Mycobacterium tuberculosis involved in cholesterol catabolism. Dresen C; Lin LY; D'Angelo I; Tocheva EI; Strynadka N; Eltis LD J Biol Chem; 2010 Jul; 285(29):22264-75. PubMed ID: 20448045 [TBL] [Abstract][Full Text] [Related]
47. Purification and characterization of a three-component salicylate 1-hydroxylase from Sphingomonas sp. strain CHY-1. Jouanneau Y; Micoud J; Meyer C Appl Environ Microbiol; 2007 Dec; 73(23):7515-21. PubMed ID: 17905882 [TBL] [Abstract][Full Text] [Related]
48. pH-dependent studies reveal an efficient hydroxylation mechanism of the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase. Ruangchan N; Tongsook C; Sucharitakul J; Chaiyen P J Biol Chem; 2011 Jan; 286(1):223-33. PubMed ID: 21030590 [TBL] [Abstract][Full Text] [Related]
50. Crystallization and preliminary X-ray analysis of salicylate hydroxylase from Pseudomonas putida S-1. Yabuuchi T; Suzuki K; Sato T; Ohnishi K; Itagaki E; Morimoto Y J Biochem; 1996 May; 119(5):829-831. PubMed ID: 8797079 [TBL] [Abstract][Full Text] [Related]
51. [Occurrence of the SAL+ phenotype in soil pseudomonads]. Kosheleva IA; Sazonova OI; Izmalkova TY; Boronin AM Mikrobiologiia; 2014; 83(6):703-11. PubMed ID: 25941720 [TBL] [Abstract][Full Text] [Related]
52. A biosynthetic aspartate N-hydroxylase performs successive oxidations by holding intermediates at a site away from the catalytic center. Rotilio L; Boverio A; Nguyen QT; Mannucci B; Fraaije MW; Mattevi A J Biol Chem; 2023 Jul; 299(7):104904. PubMed ID: 37302552 [TBL] [Abstract][Full Text] [Related]
53. Detection of methyl salicylate using bi-enzyme electrochemical sensor consisting salicylate hydroxylase and tyrosinase. Fang Y; Bullock H; Lee SA; Sekar N; Eiteman MA; Whitman WB; Ramasamy RP Biosens Bioelectron; 2016 Nov; 85():603-610. PubMed ID: 27236726 [TBL] [Abstract][Full Text] [Related]
54. Kinetic and isotopic studies of the oxidative half-reaction of phenol hydroxylase. Taylor MG; Massey V J Biol Chem; 1991 May; 266(13):8291-301. PubMed ID: 2022646 [TBL] [Abstract][Full Text] [Related]
55. NahW, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10. Bosch R; Moore ER; García-Valdés E; Pieper DH J Bacteriol; 1999 Apr; 181(8):2315-22. PubMed ID: 10197990 [TBL] [Abstract][Full Text] [Related]
56. Studies of electron-transfer properties of salicylate hydroxylase from Pseudomonas cepacia and effects of salicylate and benzoate binding. Einarsdottir GH; Stankovich MT; Tu SC Biochemistry; 1988 May; 27(9):3277-85. PubMed ID: 3390431 [TBL] [Abstract][Full Text] [Related]
57. The FMN-binding domain of cytochrome P450BM-3: resolution, reconstitution, and flavin analogue substitution. Haines DC; Sevrioukova IF; Peterson JA Biochemistry; 2000 Aug; 39(31):9419-29. PubMed ID: 10924137 [TBL] [Abstract][Full Text] [Related]
58. Molecular cloning of salicylate hydroxylase genes from Pseudomonas cepacia and Pseudomonas putida. Kim Y; Tu SC Arch Biochem Biophys; 1989 Feb; 269(1):295-304. PubMed ID: 2916843 [TBL] [Abstract][Full Text] [Related]
59. Molecular cloning of the nahG gene encoding salicylate hydroxylase from Pseudomonas fluorescens. Chung YS; Lee NR; Cheon CL; Song ES; Lee MS; Kim Y; Min KH Mol Cells; 2001 Feb; 11(1):105-9. PubMed ID: 11266111 [TBL] [Abstract][Full Text] [Related]
60. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase. Luanloet T; Sucharitakul J; Chaiyen P FEBS J; 2015 Aug; 282(16):3107-25. PubMed ID: 25639849 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]