These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 30703421)
61. Contrasting Mechanisms of Aromatic and Aryl-Methyl Substituent Hydroxylation by the Rieske Monooxygenase Salicylate 5-Hydroxylase. Rogers MS; Gordon AM; Rappe TM; Goodpaster JD; Lipscomb JD Biochemistry; 2023 Jan; 62(2):507-523. PubMed ID: 36583545 [TBL] [Abstract][Full Text] [Related]
62. Unifying and versatile features of flavin-dependent monooxygenases: Diverse catalysis by a common C4a-(hydro)peroxyflavin. Phintha A; Chaiyen P J Biol Chem; 2023 Dec; 299(12):105413. PubMed ID: 37918809 [TBL] [Abstract][Full Text] [Related]
63. The reductase of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii requires p-hydroxyphenylacetate for effective catalysis. Sucharitakul J; Chaiyen P; Entsch B; Ballou DP Biochemistry; 2005 Aug; 44(30):10434-42. PubMed ID: 16042421 [TBL] [Abstract][Full Text] [Related]
64. Structural and kinetic studies on native intermediates and an intermediate analogue in benzoylformate decarboxylase reveal a least motion mechanism with an unprecedented short-lived predecarboxylation intermediate. Bruning M; Berheide M; Meyer D; Golbik R; Bartunik H; Liese A; Tittmann K Biochemistry; 2009 Apr; 48(15):3258-68. PubMed ID: 19182954 [TBL] [Abstract][Full Text] [Related]
65. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases. Ballou DP; Entsch B; Cole LJ Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251 [TBL] [Abstract][Full Text] [Related]
66. Degradation of salicylic acid to catechol in Solanaceae by SA 1-hydroxylase. Zhou F; Last RL; Pichersky E Plant Physiol; 2021 Apr; 185(3):876-891. PubMed ID: 33793924 [TBL] [Abstract][Full Text] [Related]
67. Mechanism of Oxygen Activation in a Flavin-Dependent Monooxygenase: A Nearly Barrierless Formation of C4a-Hydroperoxyflavin via Proton-Coupled Electron Transfer. Visitsatthawong S; Chenprakhon P; Chaiyen P; Surawatanawong P J Am Chem Soc; 2015 Jul; 137(29):9363-74. PubMed ID: 26144862 [TBL] [Abstract][Full Text] [Related]
68. Structure of chromosomal DNA coding for Pseudomonas putida S-1 salicylate hydroxylase. Suzuki K; Mizuguchi M; Ohnishi K; Itagaki E Biochim Biophys Acta; 1996 Jul; 1275(3):154-6. PubMed ID: 8695632 [TBL] [Abstract][Full Text] [Related]
70. Degradation of salicylic acid by Fusarium graminearum. Rocheleau H; Al-Harthi R; Ouellet T Fungal Biol; 2019 Jan; 123(1):77-86. PubMed ID: 30654960 [TBL] [Abstract][Full Text] [Related]
71. Unique Biochemical and Sequence Features Enable BluB To Destroy Flavin and Distinguish BluB from the Flavin Monooxygenase Superfamily. Hazra AB; Ballou DP; Taga ME Biochemistry; 2018 Mar; 57(11):1748-1757. PubMed ID: 29457884 [TBL] [Abstract][Full Text] [Related]
72. Mechanism of the 6-hydroxy-3-succinoyl-pyridine 3-monooxygenase flavoprotein from Pseudomonas putida S16. Yu H; Hausinger RP; Tang HZ; Xu P J Biol Chem; 2014 Oct; 289(42):29158-70. PubMed ID: 25172510 [TBL] [Abstract][Full Text] [Related]
73. Styrene monooxygenases, indole monooxygenases and related flavoproteins applied in bioremediation and biocatalysis. Tischler D; Kumpf A; Eggerichs D; Heine T Enzymes; 2020; 47():399-425. PubMed ID: 32951830 [TBL] [Abstract][Full Text] [Related]
74. Purification and characterization of salicylate hydroxylase from Pseudomonas putida PpG7. You IS; Murray RI; Jollie D; Gunsalus IC Biochem Biophys Res Commun; 1990 Jun; 169(3):1049-54. PubMed ID: 2363715 [TBL] [Abstract][Full Text] [Related]
75. Reactions of anthranilate hydroxylase with salicylate, a nonhydroxylated substrate analogue. Steady state and rapid reaction kinetics. Powlowski J; Massey V; Ballou DP J Biol Chem; 1989 Apr; 264(10):5606-12. PubMed ID: 2925623 [TBL] [Abstract][Full Text] [Related]
76. [Characterization of salicylate 5-hydroxylase for phenanthrene degradation using moderately halophilic Martelella sp. AD-3]. Dong F; Cui C; Feng T; Feng Y; Liu Y Wei Sheng Wu Xue Bao; 2012 Aug; 52(8):985-93. PubMed ID: 23173435 [TBL] [Abstract][Full Text] [Related]
77. A gene cluster involved in degradation of substituted salicylates via ortho cleavage in Pseudomonas sp. strain MT1 encodes enzymes specifically adapted for transformation of 4-methylcatechol and 3-methylmuconate. Cámara B; Bielecki P; Kaminski F; dos Santos VM; Plumeier I; Nikodem P; Pieper DH J Bacteriol; 2007 Mar; 189(5):1664-74. PubMed ID: 17172348 [TBL] [Abstract][Full Text] [Related]
78. Degradation of lawsone by Pseudomonas putida L2. Wessendorf J; Rettenmaier H; Lingens F Biol Chem Hoppe Seyler; 1985 Oct; 366(10):945-51. PubMed ID: 4063065 [TBL] [Abstract][Full Text] [Related]
80. Production of Bioactive 3'-Hydroxystilbene Compounds Using the Flavin-Dependent Monooxygenase Sam5. Heo KT; Lee B; Son S; Ahn JS; Jang JH; Hong YS J Microbiol Biotechnol; 2018 Jul; 28(7):1105-1111. PubMed ID: 30021423 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]