BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30703688)

  • 1. Discovery of novel Flt3 inhibitory chemotypes through extensive ligand-based and new structure-based pharmacophore modelling methods.
    Abutayeh RF; Taha MO
    J Mol Graph Model; 2019 May; 88():128-151. PubMed ID: 30703688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of new JNK3 inhibitory chemotypes via QSAR-Guided selection of docking-based pharmacophores and comparison with other structure-based pharmacophore modeling methods.
    Tuffaha GO; Hatmal MM; Taha MO
    J Mol Graph Model; 2019 Sep; 91():30-51. PubMed ID: 31158642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homology modeling of DFG-in FMS-like tyrosine kinase 3 (FLT3) and structure-based virtual screening for inhibitor identification.
    Ke YY; Singh VK; Coumar MS; Hsu YC; Wang WC; Song JS; Chen CH; Lin WH; Wu SH; Hsu JT; Shih C; Hsieh HP
    Sci Rep; 2015 Jun; 5():11702. PubMed ID: 26118648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Synthesis of New Sulfonamides-Based Flt3 Inhibitors.
    Abutayeh RF; Almaliti J; Taha MO
    Med Chem; 2020; 16(3):403-412. PubMed ID: 30931863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-guided design, synthesis, and biological evaluation of quinoxalinebisarylureas as FLT3 inhibitors.
    Göring S; Bensinger D; Naumann EC; Schmidt B
    ChemMedChem; 2015 Mar; 10(3):511-22. PubMed ID: 25677073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacophore modeling of JAK1: A target infested with activity-cliffs.
    Daoud S; Taha MO
    J Mol Graph Model; 2020 Sep; 99():107615. PubMed ID: 32339898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Modeling Studies of
    Ghosh S; Keretsu S; Cho SJ
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive structure-activity-relationship of azaindoles as highly potent FLT3 inhibitors.
    Grimm SH; Gagestein B; Keijzer JF; Liu N; Wijdeven RH; Lenselink EB; Tuin AW; van den Nieuwendijk AMCH; van Westen GJP; van Boeckel CAA; Overkleeft HS; Neefjes J; van der Stelt M
    Bioorg Med Chem; 2019 Mar; 27(5):692-699. PubMed ID: 30661740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of novel inhibitors for Pim-1 kinase using pharmacophore modeling based on a novel method for selecting pharmacophore generation subsets.
    Shahin R; Swellmeen L; Shaheen O; Aboalhaija N; Habash M
    J Comput Aided Mol Des; 2016 Jan; 30(1):39-68. PubMed ID: 26685860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying novel therapeutic inhibitors to target FMS-like tyrosine kinase-3 (FLT3) against acute myeloid leukemia: a molecular docking, molecular dynamics, and DFT study.
    Islam MR; Osman OI; Hassan WMI
    J Biomol Struct Dyn; 2024; 42(1):82-100. PubMed ID: 36995071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacophore modeling and virtual screening in search of novel Bruton's tyrosine kinase inhibitors.
    Sharma A; Thelma BK
    J Mol Model; 2019 Jun; 25(7):179. PubMed ID: 31172362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical Studies Aimed at Finding FLT3 Inhibitors and a Promising Compound and Molecular Pattern with Dual Aurora B/FLT3 Activity.
    Fernandes ÍA; Braga Resende D; Ramalho TC; Kuca K; da Cunha EFF
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32283751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of new PKN2 inhibitory chemotypes via QSAR-guided selection of docking-based pharmacophores.
    Al-Sha'er MA; Basheer HA; Taha MO
    Mol Divers; 2023 Feb; 27(1):443-462. PubMed ID: 35507210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of New Phosphoinositide 3-kinase Delta (PI3Kδ) Inhibitors via Virtual Screening using Crystallography-derived Pharmacophore Modelling and QSAR Analysis.
    Al-Sha'er MA; Al-Aqtash RA; Taha MO
    Med Chem; 2019; 15(6):588-601. PubMed ID: 30799792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering new PI3Kα inhibitors with a strategy of combining ligand-based and structure-based virtual screening.
    Yu M; Gu Q; Xu J
    J Comput Aided Mol Des; 2018 Feb; 32(2):347-361. PubMed ID: 29306979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of 3-phenyl-1H-5-pyrazolylamine derivatives containing a urea pharmacophore as potent and efficacious inhibitors of FMS-like tyrosine kinase-3 (FLT3).
    Lin WH; Hsu JT; Hsieh SY; Chen CT; Song JS; Yen SC; Hsu T; Lu CT; Chen CH; Chou LH; Yang YN; Chiu CH; Chen CP; Tseng YJ; Yen KJ; Yeh CF; Chao YS; Yeh TK; Jiaang WT
    Bioorg Med Chem; 2013 Jun; 21(11):2856-67. PubMed ID: 23618709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of N
    Gucký T; Řezníčková E; Radošová Muchová T; Jorda R; Klejová Z; Malínková V; Berka K; Bazgier V; Ajani H; Lepšík M; Divoký V; Kryštof V
    J Med Chem; 2018 May; 61(9):3855-3869. PubMed ID: 29672049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer aided drug discovery of highly ligand efficient, low molecular weight imidazopyridine analogs as FLT3 inhibitors.
    Frett B; McConnell N; Smith CC; Wang Y; Shah NP; Li HY
    Eur J Med Chem; 2015 Apr; 94():123-31. PubMed ID: 25765758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the structural requirements for designing newer FLT3 inhibitors.
    Kar RK; Suryadevara P; Roushan R; Sahoo GC; Dikhit MR; Das P
    Med Chem; 2012 Sep; 8(5):913-27. PubMed ID: 22741797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining structure- and property-based optimization to identify selective FLT3-ITD inhibitors with good antitumor efficacy in AML cell inoculated mouse xenograft model.
    Heng H; Wang Z; Li H; Huang Y; Lan Q; Guo X; Zhang L; Zhi Y; Cai J; Qin T; Xiang L; Wang S; Chen Y; Lu T; Lu S
    Eur J Med Chem; 2019 Aug; 176():248-267. PubMed ID: 31103903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.