BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 30704074)

  • 1. Identification of Early Salinity Stress-Responsive Proteins in
    Wang Y; Cong Y; Wang Y; Guo Z; Yue J; Xing Z; Gao X; Chai X
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30704074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iTRAQ-based quantitative proteomic analysis reveals the lateral meristem developmental mechanism for branched spike development in tetraploid wheat (Triticum turgidum L.).
    Chen S; Chen J; Hou F; Feng Y; Zhang R
    BMC Genomics; 2018 Apr; 19(1):228. PubMed ID: 29606089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Proteomic and Physiological Analyses of Two Divergent Maize Inbred Lines Provide More Insights into Drought-Stress Tolerance Mechanisms.
    Zenda T; Liu S; Wang X; Jin H; Liu G; Duan H
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30340410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic Analyses Reveal the Mechanism of Dunaliella salina Ds-26-16 Gene Enhancing Salt Tolerance in Escherichia coli.
    Wang Y; Hu B; Du S; Gao S; Chen X; Chen D
    PLoS One; 2016; 11(5):e0153640. PubMed ID: 27135411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iTRAQ protein profile analysis of sugar beet under salt stress: different coping mechanisms in leaves and roots.
    Li J; Cui J; Cheng D; Dai C; Liu T; Wang C; Luo C
    BMC Plant Biol; 2020 Jul; 20(1):347. PubMed ID: 32698773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance.
    Chen F; Fang P; Peng Y; Zeng W; Zhao X; Ding Y; Zhuang Z; Gao Q; Ren B
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31554168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iTRAQ-Based Comparative Proteomic Analysis Provides Insights into Molecular Mechanisms of Salt Tolerance in Sugar Beet (
    Wu GQ; Wang JL; Feng RJ; Li SJ; Wang CM
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30518064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Proteins Involved in Carbohydrate Metabolism and Energy Metabolism Pathways and Their Regulation of Cytoplasmic Male Sterility in Wheat.
    Geng X; Ye J; Yang X; Li S; Zhang L; Song X
    Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29360773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iTRAQ-Based Quantitative Proteome Revealed Metabolic Changes in Winter Turnip Rape (
    Xu Y; Zeng X; Wu J; Zhang F; Li C; Jiang J; Wang Y; Sun W
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30373160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iTRAQ-based quantitative proteomic analysis of wheat roots in response to salt stress.
    Jiang Q; Li X; Niu F; Sun X; Hu Z; Zhang H
    Proteomics; 2017 Apr; 17(8):. PubMed ID: 28191739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated physiological, proteomic, and metabolomic analyses of pecan cultivar 'Pawnee' adaptation to salt stress.
    Jiao Y; Zhang J; Pan C
    Sci Rep; 2022 Feb; 12(1):1841. PubMed ID: 35115595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iTRAQ-Based Proteomic Analysis of Watermelon Fruits in Response to
    Li X; Bi X; An M; Xia Z; Wu Y
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32268502
    [No Abstract]   [Full Text] [Related]  

  • 13. iTRAQ-Based Comparative Proteomic Analysis of Seedling Leaves of Two Upland Cotton Genotypes Differing in Salt Tolerance.
    Gong W; Xu F; Sun J; Peng Z; He S; Pan Z; Du X
    Front Plant Sci; 2017; 8():2113. PubMed ID: 29326733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic Analysis of a Rice Mutant
    Peng P; Gao Y; Li Z; Yu Y; Qin H; Guo Y; Huang R; Wang J
    Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30621186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and Proteomic Analysis of Seed Germination under Salt Stress in Mulberry.
    Wang Y; Jiang W; Cheng J; Guo W; Li Y; Li C
    Front Biosci (Landmark Ed); 2023 Mar; 28(3):49. PubMed ID: 37005750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic and physiological responses in mangrove
    Xing J; Pan D; Wang L; Tan F; Chen W
    Turk J Biol; 2019; 43(5):314-325. PubMed ID: 31768104
    [No Abstract]   [Full Text] [Related]  

  • 17. iTRAQ-Based Proteomic Analysis of Ogura-CMS Cabbage and Its Maintainer Line.
    Han F; Zhang X; Yang L; Zhuang M; Zhang Y; Li Z; Fang Z; Lv H
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30326665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salinity-Induced Palmella Formation Mechanism in Halotolerant Algae
    Wei S; Bian Y; Zhao Q; Chen S; Mao J; Song C; Cheng K; Xiao Z; Zhang C; Ma W; Zou H; Ye M; Dai S
    Front Plant Sci; 2017; 8():810. PubMed ID: 28588593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential proteomic analysis reveals sequential heat stress-responsive regulatory network in radish (Raphanus sativus L.) taproot.
    Wang R; Mei Y; Xu L; Zhu X; Wang Y; Guo J; Liu L
    Planta; 2018 May; 247(5):1109-1122. PubMed ID: 29368016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of the seeds of transgenic rice lines and the corresponding nongenetically modified isogenic variety.
    Liu W; Chen H; Li L; Dong M; Zhang Z; Wan Y; Jin W
    J Sci Food Agric; 2021 Mar; 101(5):1869-1878. PubMed ID: 32898281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.