These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 30704404)
21. Detecting Long-Range Enhancer-Promoter Interactions by Quantitative Chromosome Conformation Capture. Deng W; Blobel GA Methods Mol Biol; 2017; 1468():51-62. PubMed ID: 27662870 [TBL] [Abstract][Full Text] [Related]
22. Principles of genome folding into topologically associating domains. Szabo Q; Bantignies F; Cavalli G Sci Adv; 2019 Apr; 5(4):eaaw1668. PubMed ID: 30989119 [TBL] [Abstract][Full Text] [Related]
23. Dynamics of transcriptional enhancers and chromosome topology in gene regulation. Yokoshi M; Fukaya T Dev Growth Differ; 2019 Jun; 61(5):343-352. PubMed ID: 30780195 [TBL] [Abstract][Full Text] [Related]
24. Methods for the Analysis of Topologically Associating Domains (TADs). Zufferey M; Tavernari D; Ciriello G Methods Mol Biol; 2022; 2301():39-59. PubMed ID: 34415530 [TBL] [Abstract][Full Text] [Related]
25. Different enhancer classes in Drosophila bind distinct architectural proteins and mediate unique chromatin interactions and 3D architecture. Cubeñas-Potts C; Rowley MJ; Lyu X; Li G; Lei EP; Corces VG Nucleic Acids Res; 2017 Feb; 45(4):1714-1730. PubMed ID: 27899590 [TBL] [Abstract][Full Text] [Related]
27. Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits. Rhie SK; Guo Y; Tak YG; Yao L; Shen H; Coetzee GA; Laird PW; Farnham PJ Epigenetics Chromatin; 2016; 9():50. PubMed ID: 27833659 [TBL] [Abstract][Full Text] [Related]
28. Integrated paired-end enhancer profiling and whole-genome sequencing reveals recurrent Ooi WF; Nargund AM; Lim KJ; Zhang S; Xing M; Mandoli A; Lim JQ; Ho SWT; Guo Y; Yao X; Lin SJ; Nandi T; Xu C; Ong X; Lee M; Tan AL; Lam YN; Teo JX; Kaneda A; White KP; Lim WK; Rozen SG; Teh BT; Li S; Skanderup AJ; Tan P Gut; 2020 Jun; 69(6):1039-1052. PubMed ID: 31542774 [TBL] [Abstract][Full Text] [Related]
29. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Ulianov SV; Khrameeva EE; Gavrilov AA; Flyamer IM; Kos P; Mikhaleva EA; Penin AA; Logacheva MD; Imakaev MV; Chertovich A; Gelfand MS; Shevelyov YY; Razin SV Genome Res; 2016 Jan; 26(1):70-84. PubMed ID: 26518482 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of 3D Chromatin Interactions Using Hi-C. Hu G Methods Mol Biol; 2020; 2117():65-78. PubMed ID: 31960372 [TBL] [Abstract][Full Text] [Related]
31. Looking for Broken TAD Boundaries and Changes on DNA Interactions: Clinical Guide to 3D Chromatin Change Analysis in Complex Chromosomal Rearrangements and Chromothripsis. Yauy K; Gatinois V; Guignard T; Sati S; Puechberty J; Gaillard JB; Schneider A; Pellestor F Methods Mol Biol; 2018; 1769():353-361. PubMed ID: 29564835 [TBL] [Abstract][Full Text] [Related]
32. Comparison of computational methods for Hi-C data analysis. Forcato M; Nicoletti C; Pal K; Livi CM; Ferrari F; Bicciato S Nat Methods; 2017 Jul; 14(7):679-685. PubMed ID: 28604721 [TBL] [Abstract][Full Text] [Related]
33. Co-regulation of paralog genes in the three-dimensional chromatin architecture. Ibn-Salem J; Muro EM; Andrade-Navarro MA Nucleic Acids Res; 2017 Jan; 45(1):81-91. PubMed ID: 27634932 [TBL] [Abstract][Full Text] [Related]
34. Large scale genomic reorganization of topological domains at the HoxD locus. Fabre PJ; Leleu M; Mormann BH; Lopez-Delisle L; Noordermeer D; Beccari L; Duboule D Genome Biol; 2017 Aug; 18(1):149. PubMed ID: 28784160 [TBL] [Abstract][Full Text] [Related]
35. Epigenetics of Muscle- and Brain-Specific Expression of KLHL Family Genes. Ehrlich KC; Baribault C; Ehrlich M Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33182325 [No Abstract] [Full Text] [Related]
36. Demystifying the secret mission of enhancers: linking distal regulatory elements to target genes. Yao L; Berman BP; Farnham PJ Crit Rev Biochem Mol Biol; 2015; 50(6):550-73. PubMed ID: 26446758 [TBL] [Abstract][Full Text] [Related]
37. TAD-like single-cell domain structures exist on both active and inactive X chromosomes and persist under epigenetic perturbations. Cheng Y; Liu M; Hu M; Wang S Genome Biol; 2021 Nov; 22(1):309. PubMed ID: 34749781 [TBL] [Abstract][Full Text] [Related]
38. Formation of new chromatin domains determines pathogenicity of genomic duplications. Franke M; Ibrahim DM; Andrey G; Schwarzer W; Heinrich V; Schöpflin R; Kraft K; Kempfer R; Jerković I; Chan WL; Spielmann M; Timmermann B; Wittler L; Kurth I; Cambiaso P; Zuffardi O; Houge G; Lambie L; Brancati F; Pombo A; Vingron M; Spitz F; Mundlos S Nature; 2016 Oct; 538(7624):265-269. PubMed ID: 27706140 [TBL] [Abstract][Full Text] [Related]
39. LPAD: using network construction and label propagation to detect topologically associating domains from Hi-C data. Liu J; Li P; Sun J; Guo J Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37139561 [TBL] [Abstract][Full Text] [Related]
40. TADsplimer reveals splits and mergers of topologically associating domains for epigenetic regulation of transcription. Wang G; Meng Q; Xia B; Zhang S; Lv J; Zhao D; Li Y; Wang X; Zhang L; Cooke JP; Cao Q; Chen K Genome Biol; 2020 Apr; 21(1):84. PubMed ID: 32241291 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]