These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 30704449)

  • 1. Predict drug sensitivity of cancer cells with pathway activity inference.
    Wang X; Sun Z; Zimmermann MT; Bugrim A; Kocher JP
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):15. PubMed ID: 30704449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting breast cancer drug response using a multiple-layer cell line drug response network model.
    Huang S; Hu P; Lakowski TM
    BMC Cancer; 2021 May; 21(1):648. PubMed ID: 34059012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Anticancer Drug Responses Using a Dual-Layer Integrated Cell Line-Drug Network Model.
    Zhang N; Wang H; Fang Y; Wang J; Zheng X; Liu XS
    PLoS Comput Biol; 2015; 11(9):e1004498. PubMed ID: 26418249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple gene set-based method accurately predicts the synergy of drug pairs.
    Hsu YC; Chiu YC; Chen Y; Hsiao TH; Chuang EY
    BMC Syst Biol; 2016 Aug; 10 Suppl 3(Suppl 3):66. PubMed ID: 27585722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Integrated Approach to Anti-Cancer Drug Sensitivity Prediction.
    Berlow N; Haider S; Wan Q; Geltzeiler M; Davis LE; Keller C; Pal R
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):995-1008. PubMed ID: 26357038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current Trends in Drug Sensitivity Prediction.
    Cortes-Ciriano I; Mervin LH; Bender A
    Curr Pharm Des; 2016; 22(46):6918-6927. PubMed ID: 27784247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iterative sure independent ranking and screening for drug response prediction.
    An B; Zhang Q; Fang Y; Chen M; Qin Y
    BMC Med Inform Decis Mak; 2020 Sep; 20(Suppl 8):224. PubMed ID: 32962705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A network flow-based method to predict anticancer drug sensitivity.
    Qin Y; Chen M; Wang H; Zheng X
    PLoS One; 2015; 10(5):e0127380. PubMed ID: 25992881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MD-Miner: a network-based approach for personalized drug repositioning.
    Wu H; Miller E; Wijegunawardana D; Regan K; Payne PRO; Li F
    BMC Syst Biol; 2017 Oct; 11(Suppl 5):86. PubMed ID: 28984195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia.
    Covell DG
    PLoS One; 2015; 10(7):e0127433. PubMed ID: 26132924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection.
    Dong Z; Zhang N; Li C; Wang H; Fang Y; Wang J; Zheng X
    BMC Cancer; 2015 Jun; 15():489. PubMed ID: 26121976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pan-Cancer Prediction of Cell-Line Drug Sensitivity Using Network-Based Methods.
    Pouryahya M; Oh JH; Mathews JC; Belkhatir Z; Moosmüller C; Deasy JO; Tannenbaum AR
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting enzyme targets for cancer drugs by profiling human metabolic reactions in NCI-60 cell lines.
    Li L; Zhou X; Ching WK; Wang P
    BMC Bioinformatics; 2010 Oct; 11():501. PubMed ID: 20932284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting chemosensitivity using drug perturbed gene dynamics.
    Mannheimer JD; Prasad A; Gustafson DL
    BMC Bioinformatics; 2021 Jan; 22(1):15. PubMed ID: 33413081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Cancer Drug Response using a Recommender System.
    Suphavilai C; Bertrand D; Nagarajan N
    Bioinformatics; 2018 Nov; 34(22):3907-3914. PubMed ID: 29868820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling cancer drug response through drug-specific informative genes.
    Parca L; Pepe G; Pietrosanto M; Galvan G; Galli L; Palmeri A; Sciandrone M; Ferrè F; Ausiello G; Helmer-Citterich M
    Sci Rep; 2019 Oct; 9(1):15222. PubMed ID: 31645597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression patterns that predict sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer cell lines and human lung tumors.
    Balko JM; Potti A; Saunders C; Stromberg A; Haura EB; Black EP
    BMC Genomics; 2006 Nov; 7():289. PubMed ID: 17096850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative modeling of multi-omics data to identify cancer drivers and infer patient-specific gene activity.
    Pavel AB; Sonkin D; Reddy A
    BMC Syst Biol; 2016 Feb; 10():16. PubMed ID: 26864072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.