These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30704474)

  • 1. Selecting precise reference normal tissue samples for cancer research using a deep learning approach.
    Zeng WZD; Glicksberg BS; Li Y; Chen B
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):21. PubMed ID: 30704474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Run Concrete Autoencoder to Identify Prognostic lncRNAs for 12 Cancers.
    Al Mamun A; Tanvir RB; Sobhan M; Mathee K; Narasimhan G; Holt GE; Mondal AM
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Verifying explainability of a deep learning tissue classifier trained on RNA-seq data.
    Yap M; Johnston RL; Foley H; MacDonald S; Kondrashova O; Tran KA; Nones K; Koufariotis LT; Bean C; Pearson JV; Trzaskowski M; Waddell N
    Sci Rep; 2021 Jan; 11(1):2641. PubMed ID: 33514769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based cancer survival prognosis from RNA-seq data: approaches and evaluations.
    Huang Z; Johnson TS; Han Z; Helm B; Cao S; Zhang C; Salama P; Rizkalla M; Yu CY; Cheng J; Xiang S; Zhan X; Zhang J; Huang K
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):41. PubMed ID: 32241264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue, age, sex, and disease patterns of matrisome expression in GTEx transcriptome data.
    Nieuwenhuis TO; Rosenberg AZ; McCall MN; Halushka MK
    Sci Rep; 2021 Nov; 11(1):21549. PubMed ID: 34732773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing cancer gene expression data through the lens of normal tissue-specificity.
    Frost HR
    PLoS Comput Biol; 2021 Jun; 17(6):e1009085. PubMed ID: 34143767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CancerNet: a unified deep learning network for pan-cancer diagnostics.
    Gore S; Azad RK
    BMC Bioinformatics; 2022 Jun; 23(1):229. PubMed ID: 35698059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unifying cancer and normal RNA sequencing data from different sources.
    Wang Q; Armenia J; Zhang C; Penson AV; Reznik E; Zhang L; Minet T; Ochoa A; Gross BE; Iacobuzio-Donahue CA; Betel D; Taylor BS; Gao J; Schultz N
    Sci Data; 2018 Apr; 5():180061. PubMed ID: 29664468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circular RNAs and their associations with breast cancer subtypes.
    Nair AA; Niu N; Tang X; Thompson KJ; Wang L; Kocher JP; Subramanian S; Kalari KR
    Oncotarget; 2016 Dec; 7(49):80967-80979. PubMed ID: 27829232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Tissue of Origin and Guided Therapeutic Applications in Cancers of Unknown Primary Using Deep Learning and RNA Sequencing (TransCUPtomics).
    Vibert J; Pierron G; Benoist C; Gruel N; Guillemot D; Vincent-Salomon A; Le Tourneau C; Livartowski A; Mariani O; Baulande S; Bidard FC; Delattre O; Waterfall JJ; Watson S
    J Mol Diagn; 2021 Oct; 23(10):1380-1392. PubMed ID: 34325056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance comparison of dimensionality reduction methods on RNA-Seq data from the GTEx project.
    Seok HS
    Genes Genomics; 2020 Feb; 42(2):225-234. PubMed ID: 31833048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification and Functional Analysis between Cancer and Normal Tissues Using Explainable Pathway Deep Learning through RNA-Sequencing Gene Expression.
    Park S; Huang E; Ahn T
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsupervised and supervised learning with neural network for human transcriptome analysis and cancer diagnosis.
    Yuan B; Yang D; Rothberg BEG; Chang H; Xu T
    Sci Rep; 2020 Nov; 10(1):19106. PubMed ID: 33154423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CNNDLP: A Method Based on Convolutional Autoencoder and Convolutional Neural Network with Adjacent Edge Attention for Predicting lncRNA-Disease Associations.
    Xuan P; Sheng N; Zhang T; Liu Y; Guo Y
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeePathology: Deep Multi-Task Learning for Inferring Molecular Pathology from Cancer Transcriptome.
    Azarkhalili B; Saberi A; Chitsaz H; Sharifi-Zarchi A
    Sci Rep; 2019 Nov; 9(1):16526. PubMed ID: 31712594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Denoising Autoencoder, A Deep Learning Algorithm, Aids the Identification of A Novel Molecular Signature of Lung Adenocarcinoma.
    Wang J; Xie X; Shi J; He W; Chen Q; Chen L; Gu W; Zhou T
    Genomics Proteomics Bioinformatics; 2020 Aug; 18(4):468-480. PubMed ID: 33346087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting chemotherapy response using a variational autoencoder approach.
    Wei Q; Ramsey SA
    BMC Bioinformatics; 2021 Sep; 22(1):453. PubMed ID: 34551729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Standard machine learning approaches outperform deep representation learning on phenotype prediction from transcriptomics data.
    Smith AM; Walsh JR; Long J; Davis CB; Henstock P; Hodge MR; Maciejewski M; Mu XJ; Ra S; Zhao S; Ziemek D; Fisher CK
    BMC Bioinformatics; 2020 Mar; 21(1):119. PubMed ID: 32197580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative analysis identifies potential DNA methylation biomarkers for pan-cancer diagnosis and prognosis.
    Ding W; Chen G; Shi T
    Epigenetics; 2019 Jan; 14(1):67-80. PubMed ID: 30696380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.