These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30704474)

  • 41. New functionalities in the TCGAbiolinks package for the study and integration of cancer data from GDC and GTEx.
    Mounir M; Lucchetta M; Silva TC; Olsen C; Bontempi G; Chen X; Noushmehr H; Colaprico A; Papaleo E
    PLoS Comput Biol; 2019 Mar; 15(3):e1006701. PubMed ID: 30835723
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel reference genes in colorectal cancer identify a distinct subset of high stage tumors and their associated histologically normal colonic tissues.
    Xu L; Luo H; Wang R; Wu WW; Phue JN; Shen RF; Juhl H; Wu L; Alterovitz WL; Simonyan V; Pelosof L; Rosenberg AS
    BMC Med Genet; 2019 Aug; 20(1):138. PubMed ID: 31409279
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A pan-cancer somatic mutation embedding using autoencoders.
    Palazzo M; Beauseroy P; Yankilevich P
    BMC Bioinformatics; 2019 Dec; 20(1):655. PubMed ID: 31829157
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The landscape of chimeric RNAs in bladder urothelial carcinoma.
    Zhu D; Singh S; Chen X; Zheng Z; Huang J; Lin T; Li H
    Int J Biochem Cell Biol; 2019 May; 110():50-58. PubMed ID: 30818082
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of 12 cancer types through genome deep learning.
    Sun Y; Zhu S; Ma K; Liu W; Yue Y; Hu G; Lu H; Chen W
    Sci Rep; 2019 Nov; 9(1):17256. PubMed ID: 31754222
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cell Identity Codes: Understanding Cell Identity from Gene Expression Profiles using Deep Neural Networks.
    Abdolhosseini F; Azarkhalili B; Maazallahi A; Kamal A; Motahari SA; Sharifi-Zarchi A; Chitsaz H
    Sci Rep; 2019 Feb; 9(1):2342. PubMed ID: 30787315
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Comprehensive Bioinformatics Analysis of
    Dastsooz H; Cereda M; Donna D; Oliviero S
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31067633
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis.
    Lin E; Mukherjee S; Kannan S
    BMC Bioinformatics; 2020 Feb; 21(1):64. PubMed ID: 32085701
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Achieving robust somatic mutation detection with deep learning models derived from reference data sets of a cancer sample.
    Sahraeian SME; Fang LT; Karagiannis K; Moos M; Smith S; Santana-Quintero L; Xiao C; Colgan M; Hong H; Mohiyuddin M; Xiao W
    Genome Biol; 2022 Jan; 23(1):12. PubMed ID: 34996510
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comprehensive genomic pan-cancer classification using The Cancer Genome Atlas gene expression data.
    Li Y; Kang K; Krahn JM; Croutwater N; Lee K; Umbach DM; Li L
    BMC Genomics; 2017 Jul; 18(1):508. PubMed ID: 28673244
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deep Learning-Based Pan-Cancer Classification Model Reveals Tissue-of-Origin Specific Gene Expression Signatures.
    Divate M; Tyagi A; Richard DJ; Prasad PA; Gowda H; Nagaraj SH
    Cancers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267493
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Predicting tumor response to drugs based on gene-expression biomarkers of sensitivity learned from cancer cell lines.
    Li Y; Umbach DM; Krahn JM; Shats I; Li X; Li L
    BMC Genomics; 2021 Apr; 22(1):272. PubMed ID: 33858332
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deep learning networks find unique mammographic differences in previous negative mammograms between interval and screen-detected cancers: a case-case study.
    Hinton B; Ma L; Mahmoudzadeh AP; Malkov S; Fan B; Greenwood H; Joe B; Lee V; Kerlikowske K; Shepherd J
    Cancer Imaging; 2019 Jun; 19(1):41. PubMed ID: 31228956
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gender Differential Transcriptome in Gastric and Thyroid Cancers.
    Sousa A; Ferreira M; Oliveira C; Ferreira PG
    Front Genet; 2020; 11():808. PubMed ID: 32849808
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Notable Histologic Findings in a "Normal" Cohort: The National Institutes of Health Genotype-Tissue Expression (GTEx) Project.
    Branton PA; Sobin L; Barcus M; Engel KB; Greytak SR; Guan P; Vaught J; Moore HM
    Arch Pathol Lab Med; 2024 Apr; ():. PubMed ID: 38670546
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Alternative preprocessing of RNA-Sequencing data in The Cancer Genome Atlas leads to improved analysis results.
    Rahman M; Jackson LK; Johnson WE; Li DY; Bild AH; Piccolo SR
    Bioinformatics; 2015 Nov; 31(22):3666-72. PubMed ID: 26209429
    [TBL] [Abstract][Full Text] [Related]  

  • 57. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses.
    Chandrashekar DS; Bashel B; Balasubramanya SAH; Creighton CJ; Ponce-Rodriguez I; Chakravarthi BVSK; Varambally S
    Neoplasia; 2017 Aug; 19(8):649-658. PubMed ID: 28732212
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Computational-Based Method for Predicting Drug-Target Interactions by Using Stacked Autoencoder Deep Neural Network.
    Wang L; You ZH; Chen X; Xia SX; Liu F; Yan X; Zhou Y; Song KJ
    J Comput Biol; 2018 Mar; 25(3):361-373. PubMed ID: 28891684
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicting Cancer Types From miRNA Stem-loops Using Deep Learning.
    Laplante JF; Akhloufi MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5312-5315. PubMed ID: 33019183
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Benchmarking variational AutoEncoders on cancer transcriptomics data.
    Eltager M; Abdelaal T; Charrout M; Mahfouz A; Reinders MJT; Makrodimitris S
    PLoS One; 2023; 18(10):e0292126. PubMed ID: 37796856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.