These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 30704709)

  • 1. The mysteries of insect RNAi: A focus on dsRNA uptake and transport.
    Vélez AM; Fishilevich E
    Pestic Biochem Physiol; 2018 Oct; 151():25-31. PubMed ID: 30704709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanisms influencing efficiency of RNA interference in insects.
    Cooper AM; Silver K; Zhang J; Park Y; Zhu KY
    Pest Manag Sci; 2019 Jan; 75(1):18-28. PubMed ID: 29931761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delivery of dsRNA for RNAi in insects: an overview and future directions.
    Yu N; Christiaens O; Liu J; Niu J; Cappelle K; Caccia S; Huvenne H; Smagghe G
    Insect Sci; 2013 Feb; 20(1):4-14. PubMed ID: 23955821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review.
    Huvenne H; Smagghe G
    J Insect Physiol; 2010 Mar; 56(3):227-35. PubMed ID: 19837076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for enhancing the efficiency of RNA interference in insects.
    Silver K; Cooper AM; Zhu KY
    Pest Manag Sci; 2021 Jun; 77(6):2645-2658. PubMed ID: 33440063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNAi for insect control: current perspective and future challenges.
    Katoch R; Sethi A; Thakur N; Murdock LL
    Appl Biochem Biotechnol; 2013 Oct; 171(4):847-73. PubMed ID: 23904259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variation in RNAi efficacy among insect species is attributable to dsRNA degradation in vivo.
    Wang K; Peng Y; Pu J; Fu W; Wang J; Han Z
    Insect Biochem Mol Biol; 2016 Oct; 77():1-9. PubMed ID: 27449967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel paperclip double-stranded RNA structure demonstrates clathrin-independent uptake in the mosquito Aedes aegypti.
    Abbasi R; Heschuk D; Kim B; Whyard S
    Insect Biochem Mol Biol; 2020 Dec; 127():103492. PubMed ID: 33096213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens.
    Zha W; Peng X; Chen R; Du B; Zhu L; He G
    PLoS One; 2011; 6(5):e20504. PubMed ID: 21655219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNAi as a Foliar Spray: Efficiency and Challenges to Field Applications.
    Hoang BTL; Fletcher SJ; Brosnan CA; Ghodke AB; Manzie N; Mitter N
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The involvement of clathrin-mediated endocytosis and two Sid-1-like transmembrane proteins in double-stranded RNA uptake in the Colorado potato beetle midgut.
    Cappelle K; de Oliveira CF; Van Eynde B; Christiaens O; Smagghe G
    Insect Mol Biol; 2016 Jun; 25(3):315-23. PubMed ID: 26959524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing RNAi by using concatemerized double-stranded RNA.
    Sharath Chandra G; Asokan R; Manamohan M; Krishna Kumar N
    Pest Manag Sci; 2019 Feb; 75(2):506-514. PubMed ID: 30039906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Practical Use of RNA Interference: Oral Delivery of Double-stranded RNA in Liposome Carriers for Cockroaches.
    Huang JH; Liu Y; Lin YH; Belles X; Lee HJ
    J Vis Exp; 2018 May; (135):. PubMed ID: 29782022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clathrin-dependent endocytosis is associated with RNAi response in the western corn rootworm, Diabrotica virgifera virgifera LeConte.
    Pinheiro DH; Vélez AM; Fishilevich E; Wang H; Carneiro NP; Valencia-Jiménez A; Valicente FH; Narva KE; Siegfried BD
    PLoS One; 2018; 13(8):e0201849. PubMed ID: 30092086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA interference in insects: the link between antiviral defense and pest control.
    Niu J; Chen R; Wang JJ
    Insect Sci; 2024 Feb; 31(1):2-12. PubMed ID: 37162315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endocytic pathway mediates refractoriness of insect Bactrocera dorsalis to RNA interference.
    Li X; Dong X; Zou C; Zhang H
    Sci Rep; 2015 Mar; 5():8700. PubMed ID: 25731667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects.
    Shukla JN; Kalsi M; Sethi A; Narva KE; Fishilevich E; Singh S; Mogilicherla K; Palli SR
    RNA Biol; 2016 Jul; 13(7):656-69. PubMed ID: 27245473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological mechanisms determining the success of RNA interference in insects.
    Wynant N; Santos D; Vanden Broeck J
    Int Rev Cell Mol Biol; 2014; 312():139-67. PubMed ID: 25262241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current scenario of RNAi-based hemipteran control.
    Jain RG; Robinson KE; Asgari S; Mitter N
    Pest Manag Sci; 2021 May; 77(5):2188-2196. PubMed ID: 33099867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods for Delivery of dsRNAs for Agricultural Pest Control: The Case of Lepidopteran Pests.
    Garbatti Factor B; de Moura Manoel Bento F; Figueira A
    Methods Mol Biol; 2022; 2360():317-345. PubMed ID: 34495524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.