These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 30704856)

  • 1. A Dynamic Hydrophobic Core and Surface Salt Bridges Thermostabilize a Designed Three-Helix Bundle.
    Nguyen C; Young JT; Slade GG; Oliveira RJ; McCully ME
    Biophys J; 2019 Feb; 116(4):621-632. PubMed ID: 30704856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promiscuous contacts and heightened dynamics increase thermostability in an engineered variant of the engrailed homeodomain.
    McCully ME; Beck DA; Daggett V
    Protein Eng Des Sel; 2013 Jan; 26(1):35-45. PubMed ID: 23012442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermostabilization mechanisms in thermophilic versus mesophilic three-helix bundle proteins.
    Nguyen C; Yearwood LM; McCully ME
    J Comput Chem; 2022 Jan; 43(3):197-205. PubMed ID: 34738662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Configurational entropy elucidates the role of salt-bridge networks in protein thermostability.
    Missimer JH; Steinmetz MO; Baron R; Winkler FK; Kammerer RA; Daura X; van Gunsteren WF
    Protein Sci; 2007 Jul; 16(7):1349-59. PubMed ID: 17586770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of the charged residues mutation S48E/N62H on the thermostability and unfolding behavior of cold shock protein: insights from molecular dynamics simulation with Gō model.
    Su JG; Han XM; Zhao SX; Hou YX; Li XY; Qi LS; Wang JH
    J Mol Model; 2016 Apr; 22(4):91. PubMed ID: 27021210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations suggest stabilizing mutations in a de novo designed α/β protein.
    Gill M; McCully ME
    Protein Eng Des Sel; 2019 Dec; 32(7):317-329. PubMed ID: 32086513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Close-range electrostatic interactions in proteins.
    Kumar S; Nussinov R
    Chembiochem; 2002 Jul; 3(7):604-17. PubMed ID: 12324994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of human prion protein: importance of correct treatment of electrostatic interactions.
    Zuegg J; Gready JE
    Biochemistry; 1999 Oct; 38(42):13862-76. PubMed ID: 10529232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Electrostatics and Folding Kinetics on the Thermostability of Homologous Cold Shock Proteins.
    Ferreira PHB; Freitas FC; McCully ME; Slade GG; de Oliveira RJ
    J Chem Inf Model; 2020 Feb; 60(2):546-561. PubMed ID: 31910002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common mechanism of thermostability in small α- and β-proteins studied by molecular dynamics.
    Jana K; Mehra R; Dehury B; Blundell TL; Kepp KP
    Proteins; 2020 Sep; 88(9):1233-1250. PubMed ID: 32368818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt-bridge dynamics in intrinsically disordered proteins: A trade-off between electrostatic interactions and structural flexibility.
    Basu S; Biswas P
    Biochim Biophys Acta Proteins Proteom; 2018; 1866(5-6):624-641. PubMed ID: 29548979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hydrophobic spine stabilizes a surface-exposed α-helix according to analysis of the solvent-accessible surface area.
    Liou YF; Huang HL; Ho SY
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):503. PubMed ID: 28155647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyr51: Key Determinant of the Low Thermostability of the Colwellia psychrerythraea Cold-Shock Protein.
    Lee Y; Kwak C; Jeong KW; Durai P; Ryu KS; Kim EH; Cheong C; Ahn HC; Kim HJ; Kim Y
    Biochemistry; 2018 Jul; 57(26):3625-3640. PubMed ID: 29737840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical analysis of protein structures suggests that buried ionizable residues in proteins are hydrogen bonded or form salt bridges.
    Bush J; Makhatadze GI
    Proteins; 2011 Jul; 79(7):2027-32. PubMed ID: 21560169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tri-peptide reference structures for the calculation of relative solvent accessible surface area in protein amino acid residues.
    Topham CM; Smith JC
    Comput Biol Chem; 2015 Feb; 54():33-43. PubMed ID: 25544680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of site-directed point mutations on protein misfolding: A simulation study.
    Kumar A; Biswas P
    Proteins; 2019 Sep; 87(9):760-773. PubMed ID: 31017329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced stability of a protein with increasing temperature.
    Vinther JM; Kristensen SM; Led JJ
    J Am Chem Soc; 2011 Jan; 133(2):271-8. PubMed ID: 21166411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Stability of Proteins Solvated in Imidazolium-Based Ionic Liquids Studied with Replica Exchange Molecular Dynamics.
    Lim GS; Klähn M
    J Phys Chem B; 2018 Oct; 122(39):9274-9288. PubMed ID: 30192538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of a buried ion pair in the hydrophobic core of a protein: An insight from constant pH molecular dynamics study.
    Pathak AK
    Biopolymers; 2015 Mar; 103(3):148-57. PubMed ID: 25363335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.